Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys

被引:54
作者
Liu, Y. F. [1 ]
Jia, X. J. [1 ]
Qiao, X. G. [1 ]
Xu, S. W. [2 ]
Zheng, M. Y. [1 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Baoshan Iron & Steel Co Ltd, R&D Ctr, Res Inst, Shanghai 201900, Peoples R China
基金
中国国家自然科学基金;
关键词
BINARY MG-AL; TENSILE PROPERTIES; AS-CAST; CREEP-BEHAVIOR; RE; LANTHANUM;
D O I
10.1016/j.jallcom.2019.07.267
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microstructure, thermal conductivity and mechanical properties of Mg-4Al-xLa (x = 2, 4, 6 wt%) were investigated. The concentration of Al dissolved in alpha-Mg matrix decreases with the increase of La content, and the volume fraction of Al11La3 in the Mg-4Al-xLa alloys increases because La tends to consume Al to form Al11La3. As a consequence, both yield strength and thermal conductivity of the Mg-4Al-xLa alloys in as-cast condition increase with the increasing La content. After extrusion, both thermal conductivity and mechanical properties of the Mg-4Al-xLa alloys further increase due to dynamic precipitation of Al11La3 which consumes the Al solutes dissolved in the alpha-Mg. The extruded Mg-4Al-6La alloy exhibits high thermal conductivity of 130 W/m.K, ultimate tensile strength (UTS) of 337 MPa, yield strength of 256 MPa and elongation to failure of 8.4%. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 39 条
  • [1] [Anonymous], 1970, THERMOPHYSICAL PROPE
  • [2] Microstructures and creep properties of Mg-4Al-(1-4) La alloys produced by different casting techniques
    Bai, Jing
    Sun, Yangshan
    Xue, Feng
    Qiang, Jing
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 552 : 472 - 480
  • [3] Chan K.S., 1995, ACTA METALL MATER, V43, P432
  • [4] Influence of lanthanum on the microstructure, mechanical property and corrosion resistance of magnesium alloy
    Fan, Yu
    Wu, Guohua
    Gao, Hongtao
    Li, Guanqun
    Zhai, Chunquan
    [J]. JOURNAL OF MATERIALS SCIENCE, 2006, 41 (17) : 5409 - 5416
  • [5] Thermal conductivity of the Mg-Al-Zn alloys: Experimental measurement and CALPHAD modeling
    Huang, Lei
    Liu, Shuhong
    Du, Yong
    Zhang, Cong
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2018, 62 : 99 - 108
  • [6] Evolution of microstructure and hardness of AE42 alloy after heat treatments
    Huang, Y. D.
    Dieringa, H.
    Hort, N.
    Maier, P.
    Kainer, K. U.
    Liu, Y. L.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 463 (1-2) : 238 - 245
  • [7] Ultrahigh strength as-extruded Mg-10.3Zn-6.4Y-0.4Zr-0.5Ca alloy containing W phase
    Jiang, H. S.
    Qiao, X. G.
    Xu, C.
    Zheng, M. Y.
    Wu, K.
    Kamado, S.
    [J]. MATERIALS & DESIGN, 2016, 108 : 391 - 399
  • [8] Towards magnesium alloys for high-volume automotive applications
    Joost, William J.
    Krajewski, Paul E.
    [J]. SCRIPTA MATERIALIA, 2017, 128 : 107 - 112
  • [9] Kielbus A., 2018, MAGNESIUM ALLOYS, P183
  • [10] MICROSTRUCTURE AND CASTABILITY OF Mg-Al-La ALLOYS FOR HIGH CONDUCTIVITY APPLICATIONS
    Kim, Jeong-Min
    Lee, Seung-Jin
    [J]. INTERNATIONAL JOURNAL OF METALCASTING, 2015, 9 (03) : 15 - 21