Quasi-complete intersection ideals of height 2

被引:5
作者
Bresinsky, H [1 ]
Schenzel, P
Stuckrad, J
机构
[1] Univ Maine, Dept Math, Orono, ME 04469 USA
[2] Univ Halle Wittenberg, Fachbereich Math & Informat, D-06108 Halle, Germany
[3] Univ Leipzig, Fak Math & Informat, Math Inst, D-04109 Leipzig, Germany
关键词
D O I
10.1016/S0022-4049(97)00085-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper examines some relationships between minimal generating sets of prime ideals of height 2, which are quasi-complete intersections. By characterizing the ideals p(n(1),n(2),n(3)) of monominal curves in P-k(3) with mu(p(n(1),n(2),n(3))) = 4, which are quasi-complete intersections, it is shown that our results are best possible. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 7 条
[1]   MINIMAL FREE RESOLUTIONS OF MONOMIAL CURVES IN PK3 [J].
BRESINSKY, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 59 (JUN) :121-129
[2]   CALCULATION OF GENERATING SETS OF PROJECTED VERONESEAN IDEALS WITH GENERAL ZERO (T0M,T0M-RT1R,T0M-ST1S,T1M) [J].
BRESINSKY, H ;
RENSCHUCH, B .
MATHEMATISCHE NACHRICHTEN, 1980, 96 :257-269
[3]  
Perron O, 1941, MATH Z, V47, P318
[4]   ON THE EQUATIONS WHICH ARE NEEDED TO DEFINE A CLOSED SUBSCHEME OF THE PROJECTIVE-SPACE [J].
PORTELLI, D ;
SPANGHER, W .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (01) :83-93
[5]  
SEVERI F, 1943, ABH MATH SEM HAMBURG, V15, P97
[6]   ON QUASI-COMPLETE INTERSECTIONS [J].
STUCKRAD, J .
ARCHIV DER MATHEMATIK, 1992, 58 (06) :529-538
[7]  
VAHLEN KT, 1891, J REINE ANGEW MATH, V108, P346