On compacta of cohomological dimension one over nonabelian groups

被引:0
作者
Cencelj, M [1 ]
Repovs, D [1 ]
机构
[1] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 1001, Slovenia
来源
HOUSTON JOURNAL OF MATHEMATICS | 2000年 / 26卷 / 03期
关键词
cohomological dimension; Daverman compactum; Cannon-Stan'ko compactum; nonabelian compactum; weakly Cainian compactum; perfect group; grope; Eilenberg-MacLane complex; cell-like map;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a a-dimensional homogeneous Cannon-Stan'ko compactum which fails to be nonabelian. We also introduce a new class of compact metric spaces, called Daverman compacta and we investigate their applications in the theory of cohomological dimension over nonabelian groups.
引用
收藏
页码:527 / 535
页数:9
相关论文
共 10 条
[1]   RECOGNITION PROBLEM - WHAT IS A TOPOLOGICAL MANIFOLD [J].
CANNON, JW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (05) :832-866
[2]   Cell-like maps and aspherical compacta [J].
Daverman, RJ ;
Dranishnikov, AN .
ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (01) :77-90
[3]   Cohomological dimension with respect to perfect groups [J].
Dranishnikov, Alexander N. ;
Repovs, Dusan .
TOPOLOGY AND ITS APPLICATIONS, 1996, 74 (1-3) :123-140
[4]   HOMOLOGICAL DIMENSION THEORY [J].
DRANISHNIKOV, AN .
RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (04) :11-63
[5]   Hereditarily aspherical compacta [J].
Dydak, J ;
Yokoi, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) :1933-1940
[6]  
HALL M, 1959, THEORY GROUPS
[7]  
Kuratowski K., 1968, TOPOLOGY, V1
[8]   ON 1-CYCLES AND THE FINITE DIMENSIONALITY OF HOMOLOGY 4-MANIFOLDS [J].
MITCHELL, WJR ;
REPOVS, D ;
SCEPIN, EV .
TOPOLOGY, 1992, 31 (03) :605-623
[9]  
Pontrjagin L, 1930, CR HEBD ACAD SCI, V190, P1105
[10]  
Rotman J. J., 1995, Grad. Texts in Math., V148