Level-rank duality of the U(N) WZW model, Chern-Simons theory, and 2d qYM theory

被引:0
作者
Naculich, Stephen G. [1 ]
Schnitzer, Howard J.
机构
[1] Bowdoin Coll, Dept Phys, Brunswick, ME 04011 USA
[2] Brandeis Univ, Theoret Phys Grp, Martin Fisher Sch Phys, Waltham, MA 02454 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2007年 / 06期
关键词
field theories in lower dimensions; topological field theories; Chern-Simons theories; conformal and W symmetry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the WZW, Chern-Simons, and 2d qYM theories with gauge group U(N). The U(N) WZW model is only well-defined for odd level K, and this model is shown to exhibit level-rank duality in a much simpler form than that for SU(N). The U(N) Chern-Simons theory on Seifert manifolds exhibits a similar duality, distinct from the level-rank duality of SU(N) Chern-Simons theory on S-3. When q = e(2 pi i/(N+K)), the observables of the 2d U(N) qYM theory can be expressed as a sum over a finite subset of U(N) representations. When N and K are odd, the qYM theory exhibits N <-> K duality, provided q = e(2 pi i/(N+K)) and theta =0 mod 2 pi /(N + K).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings
    Aganagic, M
    Ooguri, H
    Saulina, N
    Vafa, C
    [J]. NUCLEAR PHYSICS B, 2005, 715 (1-2) : 304 - 348
  • [2] AGANAGIC M, BPS MICROSTATES OPEN
  • [3] Aganagic M, 2006, J HIGH ENERGY PHYS
  • [4] THE BRANCHING-RULES OF CONFORMAL EMBEDDINGS
    ALTSCHULER, D
    BAUER, M
    ITZYKSON, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (02) : 349 - 364
  • [5] Phase transitions in q-deformed 2D Yang-Mills theory and topological strings -: art. no. 026005
    Arsiwalla, X
    Boels, R
    Mariño, M
    Sinkovics, A
    [J]. PHYSICAL REVIEW D, 2006, 73 (02)
  • [6] Beasley C, 2005, J DIFFER GEOM, V70, P183
  • [7] DERIVATION OF THE VERLINDE FORMULA FROM CHERN-SIMONS THEORY AND THE G/G MODEL
    BLAU, M
    THOMPSON, G
    [J]. NUCLEAR PHYSICS B, 1993, 408 (02) : 345 - 390
  • [8] Blau M., LECT 2D GAUGE THEORI
  • [9] Blau M, 2006, J HIGH ENERGY PHYS
  • [10] 2-DIMENSIONAL LATTICE GAUGE-THEORY BASED ON A QUANTUM GROUP
    BUFFENOIR, E
    ROCHE, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 170 (03) : 669 - 698