On s-semipermutable or ss-quasinormal subgroups of finite groups

被引:0
|
作者
Kang, Ping [1 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
关键词
s-Semipermutable subgroup; ss-Quasinormal subgroup; Saturated formation; QUASINORMALITY;
D O I
10.1007/s13373-014-0056-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that G is a finite group and H is a subgroup of G. H is said to be s-semipermutable in G if HG(p) = G(p)H for any Sylow p-subgroup G(p) of G with (p, vertical bar H vertical bar) = 1; H is said to be an ss-quasinormal subgroup of G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B. We will study finite groups G saisfying the following: for each noncyclic Sylow subgroup P of G, there exists a subgroup D of P such that 1 < vertical bar D vertical bar < vertical bar P vertical bar and every subgroup H of P with order vertical bar D vertical bar is s-semipermutable or ss-quasinormal in G. Some recent results are generalized and unified.
引用
收藏
页码:397 / 405
页数:9
相关论文
共 50 条
  • [21] NOTES ON "FINITE GROUPS WITH S-QUASINORMALLY EMBEDDED AND SS-QUASINORMAL SUBGROUPS"
    Li, C. W.
    Xie, F. Y.
    ACTA MATHEMATICA HUNGARICA, 2014, 144 (01) : 212 - 216
  • [22] On s-semipermutable or s-quasinormally Embedded Subgroups of Finite Groups
    Kong, Qingjun
    Guo, Xiuyun
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04): : 799 - 807
  • [23] On ss-quasinormal or weakly s-permutably embedded subgroups of finite groups
    Qingjun Kong
    Xiuyun Guo
    Monatshefte für Mathematik, 2017, 182 : 637 - 647
  • [24] Notes on “Finite Groups with S-Quasinormally Embedded and SS-Quasinormal Subgroups”
    C. W. Li
    F. Y. Xie
    Acta Mathematica Hungarica, 2014, 144 : 212 - 216
  • [25] A note "On ss-quasinormal or weakly s-permutably embedded subgroups of finite groups"
    Li, Changwen
    Zhang, Xuemei
    MONATSHEFTE FUR MATHEMATIK, 2017, 183 (01): : 159 - 163
  • [26] On S-semipermutable or S-permutably embedded subgroups of finite groups
    Yu, H.
    ACTA MATHEMATICA HUNGARICA, 2017, 151 (01) : 173 - 180
  • [27] Finite groups with many S-semipermutable p-subgroups
    Cossey, John
    Li, Yangming
    MONATSHEFTE FUR MATHEMATIK, 2025, 206 (01): : 45 - 53
  • [28] A note “On ss-quasinormal or weakly s-permutably embedded subgroups of finite groups”
    Changwen Li
    Xuemei Zhang
    Monatshefte für Mathematik, 2017, 183 : 159 - 163
  • [29] A note on S-semipermutable and S-permutably embedded subgroups of finite groups
    Yu, Haoran
    Xu, Xiaowei
    Zhang, Guanghao
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 2233 - 2241
  • [30] FINITE GROUPS WITH SOME SEMI-p-COVER-AVOIDING OR ss-QUASINORMAL SUBGROUPS
    Kong, Qingjun
    Guo, Xiuyun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 943 - 948