On s-semipermutable or ss-quasinormal subgroups of finite groups

被引:0
作者
Kang, Ping [1 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300387, Peoples R China
关键词
s-Semipermutable subgroup; ss-Quasinormal subgroup; Saturated formation; QUASINORMALITY;
D O I
10.1007/s13373-014-0056-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that G is a finite group and H is a subgroup of G. H is said to be s-semipermutable in G if HG(p) = G(p)H for any Sylow p-subgroup G(p) of G with (p, vertical bar H vertical bar) = 1; H is said to be an ss-quasinormal subgroup of G if there is a subgroup B of G such that G = HB and H permutes with every Sylow subgroup of B. We will study finite groups G saisfying the following: for each noncyclic Sylow subgroup P of G, there exists a subgroup D of P such that 1 < vertical bar D vertical bar < vertical bar P vertical bar and every subgroup H of P with order vertical bar D vertical bar is s-semipermutable or ss-quasinormal in G. Some recent results are generalized and unified.
引用
收藏
页码:397 / 405
页数:9
相关论文
共 14 条
[1]  
Deskins W. E., 1963, MATH Z, V82, P125, DOI [DOI 10.1007/BF01111801, 10.1007/BF01111801]
[2]   On s-semipermutable subgroups of finite groups and p-nilpotency [J].
Han Zhangjia .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (02) :141-148
[3]  
Huppert B., 1982, Finite Groups, VIII
[4]  
Huppert B., 1967, Endliche Gruppen I
[5]  
Kegel O. H., 1962, MATH Z, V78, P205, DOI DOI 10.1007/BF01195169
[6]   The influence of SS-quasinormality of some subgroups on the structure of finite groups [J].
Li, Shirong ;
Shen, Zhencai ;
Liu, Jianjun ;
Liu, Xiaochun .
JOURNAL OF ALGEBRA, 2008, 319 (10) :4275-4287
[7]   On SS-Quasinormal Subgroups of Finite Groups [J].
Li, Shirong ;
Shen, Zhencai ;
Kong, Xianghong .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (12) :4436-4447
[8]   The influence of π-quasinormality of some subgroups of a finite group [J].
Li, YM ;
Wang, YM ;
Wei, HQ .
ARCHIV DER MATHEMATIK, 2003, 81 (03) :245-252
[9]   The influence of minimal subgroups on the structure of a finite group [J].
Li, YM ;
Wang, YM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :337-341
[10]   Subgroups permutable with all Sylow subgroups [J].
Schmid, P .
JOURNAL OF ALGEBRA, 1998, 207 (01) :285-293