Robust finite-time output feedback stabilisation of the double integrator

被引:52
作者
Bernuau, Emmanuel [1 ]
Perruquetti, Wilfrid [1 ,2 ]
Efimov, Denis [2 ,4 ]
Moulay, Emmanuel [3 ]
机构
[1] Ecole Cent Lille, LAGIS UMR 8219, F-59651 Villeneuve Dascq, France
[2] INRIA Lille Nord Europe, Non A Project, F-59650 Villeneuve Dascq, France
[3] UMR CNRS 7252, Dept XLIM SIC, F-86962 Futuroscope, France
[4] Univ ITMO, Dept Control Syst & Informat, St Petersburg 197101, Russia
关键词
input-to-state stability; output control; finite-time stability; double integrator; NONLINEAR-SYSTEMS; STABILITY; HOMOGENEITY; OBSERVERS;
D O I
10.1080/00207179.2014.956340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of finite-time output stabilisation of the double integrator is addressed applying the homogeneity approach. A homogeneous controller and a homogeneous observer are designed (for different degrees of homogeneity) ensuring the finite-time stabilisation. Their combination under mild conditions is shown to stay homogeneous and finite-time stable as well. Robustness and effects of discretisation on the closed-loop system obtained are analysed. The efficiency of the solution obtained is demonstrated in computer simulations.
引用
收藏
页码:451 / 460
页数:10
相关论文
共 29 条
[21]  
Qian C., 2001, SYSTEMS CONTROL LETT, V16, P441
[22]   Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach [J].
Qian, Chunjiang ;
Li, Ji .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2006, 16 (09) :441-463
[23]  
Rosier L., 1993, THESIS ECOLE NORMALE
[24]   UNIVERSAL STABILIZATION OF A CLASS OF NONLINEAR-SYSTEMS WITH HOMOGENEOUS VECTOR-FIELDS [J].
RYAN, EP .
SYSTEMS & CONTROL LETTERS, 1995, 26 (03) :177-184
[25]   Semi-global finite-time observers for nonlinear systems [J].
Shen, Yanjun ;
Xia, Xiaohua .
AUTOMATICA, 2008, 44 (12) :3152-3156
[26]   SMOOTH STABILIZATION IMPLIES COPRIME FACTORIZATION [J].
SONTAG, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (04) :435-443
[27]  
Wonham W. M., 1985, Linear multivariable control: a geometric approach
[28]   Finite-time consensus of second-order leader-following multi-agent systems without velocity measurements [J].
Zhang, Yanjiao ;
Yang, Ying .
PHYSICS LETTERS A, 2013, 377 (3-4) :243-249
[29]  
[No title captured]