Robust finite-time output feedback stabilisation of the double integrator

被引:52
作者
Bernuau, Emmanuel [1 ]
Perruquetti, Wilfrid [1 ,2 ]
Efimov, Denis [2 ,4 ]
Moulay, Emmanuel [3 ]
机构
[1] Ecole Cent Lille, LAGIS UMR 8219, F-59651 Villeneuve Dascq, France
[2] INRIA Lille Nord Europe, Non A Project, F-59650 Villeneuve Dascq, France
[3] UMR CNRS 7252, Dept XLIM SIC, F-86962 Futuroscope, France
[4] Univ ITMO, Dept Control Syst & Informat, St Petersburg 197101, Russia
关键词
input-to-state stability; output control; finite-time stability; double integrator; NONLINEAR-SYSTEMS; STABILITY; HOMOGENEITY; OBSERVERS;
D O I
10.1080/00207179.2014.956340
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of finite-time output stabilisation of the double integrator is addressed applying the homogeneity approach. A homogeneous controller and a homogeneous observer are designed (for different degrees of homogeneity) ensuring the finite-time stabilisation. Their combination under mild conditions is shown to stay homogeneous and finite-time stable as well. Robustness and effects of discretisation on the closed-loop system obtained are analysed. The efficiency of the solution obtained is demonstrated in computer simulations.
引用
收藏
页码:451 / 460
页数:10
相关论文
共 29 条
[1]  
Athans M., 2013, OPTIMAL CONTROL INTR
[2]  
Bacciotti A., 2005, Lyapunov Functions and Stability in Control Theory
[3]   On homogeneity and its application in sliding mode control [J].
Bernuau, Emmanuel ;
Efimov, Denis ;
Perruquetti, Wilfrid ;
Polyakov, Andrey .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (04) :1866-1901
[4]   Verification of ISS, iISS and IOSS properties applying weighted homogeneity [J].
Bernuau, Emmanuel ;
Polyakov, Andrey ;
Efimov, Denis ;
Perruquetti, Wilfrid .
SYSTEMS & CONTROL LETTERS, 2013, 62 (12) :1159-1167
[5]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[6]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[7]   Geometric homogeneity with applications to finite-time stability [J].
Bhat, SP ;
Bernstein, DS .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) :101-127
[8]   Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems [J].
Floquet, T ;
Barbot, JP ;
Perruquetti, W .
AUTOMATICA, 2003, 39 (06) :1077-1083
[9]   FINITE-TIME CONTROLLERS [J].
HAIMO, VT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :760-770
[10]  
Hermes H., 1991, DIFF EQUAT, V109, P249