Static atomic-scale structural heterogeneity and its effects on glass formation and dynamics of metallic glasses

被引:16
作者
Liu, X. J. [1 ]
Wang, S. D. [1 ]
Fan, H. Y. [1 ]
Ye, Y. F. [1 ]
Wang, H. [1 ]
Wu, Y. [1 ]
Lu, Z. P. [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Metallic glass; Structural heterogeneity; Glass-forming ability; Molecular dynamics simulation; MEDIUM-RANGE ORDER; SUPERCOOLED LIQUIDS; MOLECULAR-DYNAMICS; RELAXATION; TRANSITION; DIFFUSION;
D O I
10.1016/j.intermet.2018.08.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics simulations were employed to investigate structural heterogeneity at the sub-nanometer scale for binary Cu-Zr liquids and glasses. The normalized local atomic number density fluctuates significantly in all the liquids and glasses, confirming existence of the static atomic-scale structural heterogeneity. The dynamic evolution of structural heterogeneity profile shows that the good glass former has better inheritance of structural heterogeneity from its liquid state than the poor one, suggesting a close relation between the structural inheritance and the glass-forming ability. Further analyses regarding evolution of dynamic properties, i.e., viscosity and the a relaxation time, as a function of undercooling demonstrate that the better inheritance of the structural heterogeneity in the better glass former stems from its higher liquid stability. Our atomic structural investigation indicates that the enhanced connectivity of short-range ordering clusters could be responsible for the better inheritance of structural heterogeneity and the larger glass-forming ability.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 48 条
[1]   RELAXATION IN LIQUIDS, POLYMERS AND PLASTIC CRYSTALS - STRONG FRAGILE PATTERNS AND PROBLEMS [J].
ANGELL, CA .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 131 :13-31
[2]   Direct experimental evidence of a growing length scale accompanying the glass transition [J].
Berthier, L ;
Biroli, G ;
Bouchaud, JP ;
Cipelletti, L ;
El Masri, D ;
L'Hôte, D ;
Ladieu, F ;
Pierno, M .
SCIENCE, 2005, 310 (5755) :1797-1800
[3]   Theoretical perspective on the glass transition and amorphous materials [J].
Berthier, Ludovic ;
Biroli, Giulio .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :587-645
[4]   NONEXPONENTIAL RELAXATIONS IN STRONG AND FRAGILE GLASS FORMERS [J].
BOHMER, R ;
NGAI, KL ;
ANGELL, CA ;
PLAZEK, DJ .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (05) :4201-4209
[5]   Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys [J].
Cheng, Y. Q. ;
Sheng, H. W. ;
Ma, E. .
PHYSICAL REVIEW B, 2008, 78 (01)
[6]   Atomic Level Structure in Multicomponent Bulk Metallic Glass [J].
Cheng, Y. Q. ;
Ma, E. ;
Sheng, H. W. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[7]   Supercooled liquids and the glass transition [J].
Debenedetti, PG ;
Stillinger, FH .
NATURE, 2001, 410 (6825) :259-267
[8]   Elastic Heterogeneity in Metallic Glasses [J].
Dmowski, W. ;
Iwashita, T. ;
Chuang, C-P ;
Almer, J. ;
Egami, T. .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[9]   Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments:: Glass formation and atomic-level structure -: art. no. 224208 [J].
Duan, G ;
Xu, DH ;
Zhang, Q ;
Zhang, GY ;
Cagin, T ;
Johnson, WL ;
Goddard, WA .
PHYSICAL REVIEW B, 2005, 71 (22)
[10]   Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network [J].
Egami, T. ;
Poon, S. J. ;
Zhang, Z. ;
Keppens, V. .
PHYSICAL REVIEW B, 2007, 76 (02)