Algebraic cycles and infinitesimal invariants on Jacobian varieties

被引:8
作者
Ikeda, A [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
关键词
D O I
10.1090/S1056-3911-03-00360-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the infinitesimal invariant for a family of algebraic cycles on Jacobian varieties, and prove the formula for calculating the infinitesimal invariant. Applying this formula to Jacobian varieties of plane curves, we detect a non-torsion element in the higher Griffiths group, which is a group of algebraic cycles modulo certain algebraic equivalence based on the theory of mixed motives.
引用
收藏
页码:573 / 603
页数:31
相关论文
共 22 条
[1]  
[Anonymous], 1968, PUBLICATIONS MATHEMA
[2]  
ASAKURA M, GEN JACOBIAN RINGS O
[3]   THE CHOW RING OF AN ABELIAN MANIFOLD [J].
BEAUVILLE, A .
MATHEMATISCHE ANNALEN, 1986, 273 (04) :647-651
[4]  
BEILINSON AA, 1987, LECT NOTES MATH, V1289, P1
[5]  
CARLSON J, 1983, COMPOS MATH, V50, P109
[6]   C IS NOT ALGEBRAICALLY EQUIVALENT TO C- IN ITS JACOBIAN [J].
CERESA, G .
ANNALS OF MATHEMATICS, 1983, 117 (02) :285-291
[7]   THE GRIFFITHS INFINITESIMAL INVARIANT FOR A CURVE IN ITS JACOBIAN [J].
COLLINO, A ;
PIROLA, GP .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (01) :59-88
[8]  
DELIGNE P, 1971, PUBL MATH IHES, V40, P5
[9]  
Deligne P., 1974, PUBL MATH IHES, V44, P5
[10]  
DENINGER C, 1991, J REINE ANGEW MATH, V422, P201