A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires

被引:6
作者
Bento, G. C. [1 ]
Cruz Neto, J. X. [2 ]
Soares Jr, P. A. [3 ]
Soubeyran, A. [4 ,5 ]
机构
[1] Univ Fed Goias, IME, BR-74001970 Goiania, Go, Brazil
[2] Univ Fed Piaui, DM, CCN, BR-64049550 Teresina, PI, Brazil
[3] Univ Etadual Piaui, DM, CCN, BR-64002150 Teresina, PI, Brazil
[4] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Marseille, France
[5] Aix Marseille Univ, Aix Marseille Sch Econ, EHESS, Marseille, France
关键词
Proximal algorithms; Equilibrium problem; Hadamard manifold; Desires; Trap; Worthwhile changes; PROXIMAL POINT ALGORITHM; MONOTONE VECTOR-FIELDS; VARIATIONAL-INEQUALITIES; RIEMANNIAN-MANIFOLDS; EXISTENCE;
D O I
10.1007/s10479-021-04052-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce a new proximal algorithm for equilibrium problems on a genuine Hadamard manifold, using a new regularization term. We first extend recent existence results by considering pseudomonotone bifunctions and a weaker sufficient condition than the coercivity assumption. Then, we consider the convergence of this proximal-like algorithm which can be applied to genuinely Hadamard manifolds and not only to specific ones, as in the recent literature. A striking point is that our new regularization term have a clear interpretation in a recent "variational rationality" approach of human behavior. It represents the resistance to change aspects of such human dynamics driven by motivation to change aspects. This allows us to give an application to the theories of desires, showing how an agent must escape to a succession of temporary traps to be able to reach, at the end, his desires.
引用
收藏
页码:1301 / 1318
页数:18
相关论文
共 49 条
[1]   Enlargement of Monotone Vector Fields and an Inexact Proximal Point Method for Variational Inequalities in Hadamard Manifolds [J].
Batista, Edvaldo E. A. ;
Bento, Glaydston de Carvalho ;
Ferreira, Orizon P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (03) :916-931
[2]   Subgradient Method for Convex Feasibility on Riemannian Manifolds [J].
Bento, Glaydston C. ;
Melo, Jefferson G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) :773-785
[3]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[4]  
Blum E., 1994, Math. Stud., V63, P123
[5]   A Newton-like approach to solvingan equilibrium problem [J].
Vladimir A. Bulavsky ;
Vyacheslav V. Kalashnikov .
Annals of Operations Research, 1998, 81 (0) :115-128
[6]   Equilibrium problems in Hadamard manifolds [J].
Colao, Vittorio ;
Lopez, Genaro ;
Marino, Giuseppe ;
Martin-Marquez, Victoria .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :61-77
[7]   On maximal monotonicity of bifunctions on Hadamard manifolds [J].
Cruz Neto, J. X. ;
Jacinto, F. M. O. ;
Soares, P. A., Jr. ;
Souza, J. C. O. .
JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) :591-601
[8]   An extragradient method for equilibrium problems on Hadamard manifolds [J].
Cruz Neto, J. X. ;
Santos, P. S. M. ;
Soares, P. A., Jr. .
OPTIMIZATION LETTERS, 2016, 10 (06) :1327-1336
[9]   Proximal Point Method on Finslerian Manifolds and the "Effort-Accuracy" Trade-off [J].
Cruz Neto, J. X. ;
Oliveira, P. R. ;
Soares, P. A., Jr. ;
Soubeyran, A. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 162 (03) :873-891
[10]   Convex- and monotone-transformable mathematical programming problems and a proximal-like point method [J].
Da Cruz Neto, J. X. ;
Ferreira, O. P. ;
Perez, L. R. Lucambio ;
Nemeth, S. Z. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (01) :53-69