Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells

被引:61
作者
Maynard, Brian [1 ]
Long, Qi [1 ]
Schiff, Eric A. [1 ]
Yang, Mengjin [2 ]
Zhu, Kai [2 ]
Kottokkaran, Ranjith [3 ]
Abbas, Hisham [3 ]
Dalal, Vikram L. [3 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Iowa State Univ, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
TRANSPORT;
D O I
10.1063/1.4948344
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm(2)/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 33 条
[1]   High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer [J].
Abbas, Hisham A. ;
Kottokkaran, Ranjith ;
Ganapathy, Balaji ;
Samiee, Mehran ;
Zhang, Liang ;
Kitahara, Andrew ;
Noack, Max ;
Dalal, Vikram L. .
APL MATERIALS, 2015, 3 (01)
[2]   The effect of diffusion-limited lifetime on implied current voltage curves based on photoluminescence data [J].
Abbott, M. D. ;
Bardos, R. A. ;
Trupke, T. ;
Fisher, K. C. ;
Pink, E. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (04)
[3]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[4]  
[Anonymous], SUBNANOSECOND PHOTOC
[5]  
Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
[6]   Dispersive electron transport in tris(8-hydroxyquinoline) aluminum (Alq3) probed by impedance spectroscopy -: art. no. 286601 [J].
Berleb, S ;
Brütting, W .
PHYSICAL REVIEW LETTERS, 2002, 89 (28)
[7]   Dispersive hole transport in poly(p-phenylene vinylene) [J].
Blom, PWM ;
Vissenberg, MCJM .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3819-3822
[8]   DISPERSIVE NATURE OF HOLE TRANSPORT IN POLYVINYLCARBAZOLE [J].
BOS, FC ;
GUION, T ;
BURLAND, DM .
PHYSICAL REVIEW B, 1989, 39 (17) :12633-12641
[9]   Efficient and Balanced Charge Transport Revealed in Planar Perovskite Solar Cells [J].
Chen, Yani ;
Peng, Jiajun ;
Su, Diqing ;
Chen, Xiaoqing ;
Liang, Ziqi .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (08) :4471-4475
[10]   Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance [J].
De Wolf, Stefaan ;
Holovsky, Jakub ;
Moon, Soo-Jin ;
Loeper, Philipp ;
Niesen, Bjoern ;
Ledinsky, Martin ;
Haug, Franz-Josef ;
Yum, Jun-Ho ;
Ballif, Christophe .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (06) :1035-1039