Identification of potential genomic biomarkers for Parkinson's disease using data pooling of gene expression microarrays

被引:3
|
作者
Lin, Zhijian [1 ]
Zhou, Lishu [1 ,2 ]
Li, Yaosha [1 ]
Liu, Suni [1 ]
Xie, Qizhi [1 ]
Xu, Xu [3 ]
Wu, Jun [1 ]
机构
[1] Peking Univ Shenzhen Hosp, Dept Neurol, Shenzhen 518036, Peoples R China
[2] Anhui Med Univ, Peking Univ, Clin Coll, Shenzhen Hosp, Shenzhen 518036, Peoples R China
[3] Shenzhen Univ, Coll Life Sci & Oceanog, Shenzhen 518060, Peoples R China
关键词
CS; diagnostic biomarkers; Parkinson’ s disease; PRKCD; RHOG; ROC; VAMP2; weighted gene co-expression network analysis; DIAGNOSIS; PHENOTYPES; ROLES; BLOOD; AGE;
D O I
10.2217/bmm-2020-0325
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Aim: In this study, we aimed to identify potential diagnostic biomarkers Parkinson's disease (PD) by exploring microarray gene expression data of PD patients. Materials & methods: Differentially expressed genes associated with PD were screened from the GSE99039 dataset using weighted gene co-expression network analysis, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, gene-gene interaction network analysis and receiver operator characteristics analysis. Results: We identified two PD-associated modules, in which genes from the chemokine signaling pathway were primarily enriched. In particular, CS, PRKCD, RHOG and VAMP2 directly interacted with known PD-associated genes and showed higher expression in the PD samples, and may thus be potential biomarkers in PD diagnosis. Conclusion: A DFG-analysis identified a four-gene panel (CS, PRKCD, RHOG, VAMP2) as a potential diagnostic predictor to diagnose PD.
引用
收藏
页码:585 / 595
页数:11
相关论文
共 50 条
  • [21] Identification of Potential Biomarkers for CAD Using Integrated Expression and Methylation Data
    Zhang, Xiaokang
    Xiang, Yang
    He, Dingdong
    Liang, Bin
    Wang, Chen
    Luo, Jing
    Zheng, Fang
    FRONTIERS IN GENETICS, 2020, 11
  • [22] Genomic convergence: Identification of candidate genes for Parkinson Disease (PD) using genetic linkage and gene expression in the substantia nigra
    Hauser, MA
    Noureddine, M
    Walter, JW
    Walters, RW
    Hulette, CM
    Schmechel, DE
    Bembe, ML
    Stajich, JM
    Xu, H
    Martin, ER
    Scott, BL
    Stenger, J
    Li, YJ
    Jensen, R
    Scherzer, C
    Gullans, S
    Vance, JM
    AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (05) : 507 - 507
  • [23] Predicting biomarkers for ovarian cancer using gene-expression microarrays
    Adib, TR
    Henderson, S
    Perrett, C
    Hewitt, D
    Bourmpoulia, D
    Ledermann, J
    Boshoff, C
    BRITISH JOURNAL OF CANCER, 2004, 90 (03) : 686 - 692
  • [24] Identification of Alzheimer's Disease Autoantibodies and Their Target Biomarkers by Phage Microarrays
    San Segundo-Acosta, Pablo
    Montero-Calle, Ana
    Fuentes, Manuel
    Rabano, Alberto
    Villalba, Mayte
    Barderas, Rodrigo
    JOURNAL OF PROTEOME RESEARCH, 2019, 18 (07) : 2940 - 2953
  • [25] Predicting biomarkers for ovarian cancer using gene-expression microarrays
    T R Adib
    S Henderson
    C Perrett
    D Hewitt
    D Bourmpoulia
    J Ledermann
    C Boshoff
    British Journal of Cancer, 2004, 90 : 686 - 692
  • [26] Identification of Axonal Transport Biomarkers in Parkinson's Disease
    Chadwick, Christine W.
    Aminoff, Michael J.
    Wong, Po-Yin A.
    Husted, Kristofor H.
    Liu, Shanshan
    Liu, Victoria M.
    Kohlstaedt, Lori A.
    Protasio, Johan
    Riff, Timothy
    Boban, Drina
    Killian, Maudi
    Epling, Lorrie
    Sinclair, Elisabeth
    Peterson, Julia
    Price, Richard
    Hellerstein, Marc K.
    Farnara, Patrizia
    ANNALS OF NEUROLOGY, 2012, 72 : S93 - S94
  • [27] Potential Biomarkers and Treatment of Neuroinflammation in Parkinson's Disease
    Zhao, Ziqi
    Fu, Qiang
    Guo, Xiangyu
    He, Huihan
    Yang, Ge
    ACTAS ESPANOLAS DE PSIQUIATRIA, 2025, 53 (01): : 181 - 188
  • [28] Identification of potential biomarkers on microarray data using distributed gene selection approach
    Shukla, Alok Kumar
    Tripathi, Diwakar
    MATHEMATICAL BIOSCIENCES, 2019, 315
  • [29] Genomic signal processing of microarrays for cancer gene expression and identification using cluster-fuzzy adaptive networking
    Mishra, Purnendu
    Bhoi, Nilamani
    SOFT COMPUTING, 2020, 24 (24) : 18447 - 18462
  • [30] Genomic signal processing of microarrays for cancer gene expression and identification using cluster-fuzzy adaptive networking
    Purnendu Mishra
    Nilamani Bhoi
    Soft Computing, 2020, 24 : 18447 - 18462