A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography

被引:384
作者
Oikonomou, Evangelos K. [1 ,2 ]
Williams, Michelle C. [3 ,4 ]
Kotanidis, Christos P. [1 ,2 ]
Desai, Milind Y. [5 ]
Marwan, Mohamed [6 ]
Antonopoulos, Alexios S. [1 ,2 ]
Thomas, Katharine E. [1 ,2 ]
Thomas, Sheena [1 ,2 ]
Akoumianakis, Ioannis [1 ]
Fan, Lampson M. [7 ]
Kesavan, Sujatha [7 ]
Herdman, Laura [1 ,2 ]
Alashi, Alaa [5 ]
Centeno, Erika Hutt [5 ]
Lyasheva, Maria [1 ,2 ]
Griffin, Brian P. [5 ]
Flamm, Scott D. [5 ]
Shirodaria, Cheerag [7 ,8 ]
Sabharwal, Nikant [7 ]
Kelion, Andrew [7 ]
Dweck, Marc R. [3 ,4 ]
Van Beek, Edwin J. R. [4 ]
Deanfield, John [9 ]
Hopewell, Jemma C. [10 ]
Neubauer, Stefan [1 ,11 ,12 ]
Channon, Keith M. [1 ,11 ,12 ]
Achenbach, Stephan [6 ]
Newby, David E. [3 ,4 ]
Antoniades, Charalambos [1 ,2 ,11 ,12 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Radcliffe Dept Med, Div Cardiovasc Med, Headley Way, Oxford OX3 9DU, England
[2] John Radcliffe Hosp, Oxford Acad Cardiovasc CT Core Lab, West Wing,Headley Way, Oxford OX3 9DU, England
[3] Univ Edinburgh, British Heart Fdn Ctr Cardiovasc Sci, Chancellors Bldg,49 Little France Cres, Edinburgh EH16 4TJ, Midlothian, Scotland
[4] Univ Edinburgh, Edinburgh Imaging Facil QMRI, 47 Little France Cres, Edinburgh EH16 4TJ, Midlothian, Scotland
[5] Cleveland Clin, Heart & Vasc Inst, 9500 Euclid Ave, Cleveland, OH 44195 USA
[6] Friedrich Alexander Univ Erlangen Nurnberg, Dept Cardiol, Ulmenweg 18, D-91054 Erlangen, Germany
[7] Oxford Univ Hosp NHS Fdn Trust, John Radcliffe Hosp, Dept Cardiol, Oxford OX3 9DU, England
[8] Caristo Diagnost Ltd, Whichford House,John Smith Dr, Oxford OX4 2JY, England
[9] UCL, Natl Ctr Cardiovasc Prevent & Outcomes, Inst Cardiovasc Sci, 1 St Martins Le Grand, London EC1A 4NP, England
[10] Univ Oxford, Nuffield Dept Populat Hlth, Clin Trial Serv Unit, BHF Ctr Res Excellence,Big Data Inst, Old Rd Campus,Roosevelt Dr, Oxford OX3 7LF, England
[11] Univ Oxford, John Radcliffe Hosp, British Heart Fdn Ctr Res Excellence, Headley Way, Oxford OX3 9DU, England
[12] John Radcliffe Hosp, Natl Inst Hlth Res Oxford Biomed Res Ctr, Headley Way, Oxford OX3 9DU, England
基金
英国工程与自然科学研究理事会;
关键词
Computed tomography; Adipose tissue; Radiomics; Machine learning; Risk stratification; Coronary artery disease; ADIPOSE-TISSUE; INFLAMMATION; ADIPONECTIN; GUIDELINES; MANAGEMENT; RADIOMICS; SOCIETY; DISEASE; HEART; SCCT;
D O I
10.1093/eurheartj/ehz592
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. Methods and results We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62-0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Delta[C-statistic] = 0.126, P<0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. Conclusion The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.
引用
收藏
页码:3529 / 3543
页数:15
相关论文
共 39 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Detecting human coronary inflammation by imaging perivascular fat [J].
Antonopoulos, Alexios S. ;
Sanna, Fabio ;
Sabharwal, Nikant ;
Thomas, Sheena ;
Oikonomou, Evangelos K. ;
Herdman, Laura ;
Margaritis, Marios ;
Shirodaria, Cheerag ;
Kampoli, Anna-Maria ;
Akoumianakis, Ioannis ;
Petrou, Mario ;
Sayeed, Rana ;
Krasopoulos, George ;
Psarros, Constantinos ;
Ciccone, Patricia ;
Brophy, Carl M. ;
Digby, Janet ;
Kelion, Andrew ;
Uberoi, Raman ;
Anthony, Suzan ;
Alexopoulos, Nikolaos ;
Tousoulis, Dimitris ;
Achenbach, Stephan ;
Neubauer, Stefan ;
Channon, Keith M. ;
Antoniades, Charalambos .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (398)
[3]   Adiponectin as a Link Between Type 2 Diabetes and Vascular NADPH Oxidase Activity in the Human Arterial Wall: The Regulatory Role of Perivascular Adipose Tissue [J].
Antonopoulos, Alexios S. ;
Margaritis, Marios ;
Coutinho, Patricia ;
Shirodaria, Cheerag ;
Psarros, Costas ;
Herdman, Laura ;
Sanna, Fabio ;
De Silva, Ravi ;
Petrou, Mario ;
Sayeed, Rana ;
Krasopoulos, George ;
Lee, Regent ;
Digby, Janet ;
Reilly, Svetlana ;
Bakogiannis, Constantinos ;
Tousoulis, Dimitris ;
Kessler, Benedikt ;
Casadei, Barbara ;
Channon, Keith M. ;
Antoniades, Charalambos .
DIABETES, 2015, 64 (06) :2207-2219
[4]   Reciprocal Effects of Systemic Inflammation and Brain Natriuretic Peptide on Adiponectin Biosynthesis in Adipose Tissue of Patients With Ischemic Heart Disease [J].
Antonopoulos, Alexios S. ;
Margaritis, Marios ;
Coutinho, Patricia ;
Digby, Janet ;
Patel, Rikhil ;
Psarros, Constantinos ;
Ntusi, Ntobeko ;
Karamitsos, Theodoros D. ;
Lee, Regent ;
De Silva, Ravi ;
Petrou, Mario ;
Sayeed, Rana ;
Demosthenous, Michael ;
Bakogiannis, Constantinos ;
Wordsworth, Paul B. ;
Tousoulis, Dimitris ;
Neubauer, Stefan ;
Channon, Keith M. ;
Antoniades, Charalambos .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (09) :2151-2159
[5]  
Austen W G, 1975, Circulation, V51, P5
[6]   Adipose tissue, inflammation, and cardiovascular disease [J].
Berg, AH ;
Scherer, PE .
CIRCULATION RESEARCH, 2005, 96 (09) :939-949
[7]   Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque [J].
Camici, Paolo G. ;
Rimoldi, Ornella E. ;
Gaemperli, Oliver ;
Libby, Peter .
EUROPEAN HEART JOURNAL, 2012, 33 (11) :1309-U29
[8]   The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis [J].
Crewe, Clair ;
An, Yu Aaron ;
Scherer, Philipp E. .
JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (01) :74-82
[9]   CAD-RADS™ Coronary Artery Disease - Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology [J].
Cury, Ricardo C. ;
Abbara, Suhny ;
Achenbach, Stephan ;
Agatston, Arthur ;
Berman, Daniel S. ;
Budoff, Matthew J. ;
Dill, Karin E. ;
Jacobs, Jill E. ;
Maroules, Christopher D. ;
Rubin, Geoffrey D. ;
Rybicki, Frank J. ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Stillman, Arthur E. ;
White, Charles S. ;
Woodard, Pamela K. ;
Leipsic, Jonathon A. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (04) :269-281
[10]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341