On a Positive Solution for (p, q)-Laplace Equation with Nonlinear Boundary Conditions and Indefinite Weights

被引:2
作者
Zerouali, Abdellah [1 ]
Karim, Belhadj [2 ]
Chakrone, Omar [3 ]
Boukhsas, Abdelmajid [4 ]
机构
[1] Ctr Reg Metiers Educ & Format, Oujda, Morocco
[2] Fac Sci & Tech, Errachidia, Morocco
[3] Fac Sci Oujda, Oujda, Morocco
[4] Fac Sci, Oujda, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2020年 / 38卷 / 04期
关键词
(p; q)-Laplacian; Nonlinear boundary conditions; Indefinite weight; Mountain pass theorem; Global minimizer; GENERALIZED EIGENVALUE PROBLEMS;
D O I
10.5269/bspm.v38i4.36661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study the existence and non-existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator (p, q)-Laplacian with indefinite weights. We also prove, under appropriate conditions, that the results are completely different from those for the usual Steklov eigenvalue problem involving the p-Laplacian with indefinite weight. Precisely, we show that there exists an interval of principal eigenvalues for our Steklov eigenvalue problem.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 18 条
  • [1] Anane A., 2011, B SOC PARAN MAT, V29, P17
  • [2] [Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
  • [3] [Anonymous], 1979, LECT NOTES BIOMATHEM
  • [4] Aris R., 1978, RES NOTES MATH
  • [5] On the solutions of the (p, q)-Laplacian problem at resonance
    Benouhiba, Nawel
    Belyacine, Zahia
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 : 74 - 81
  • [6] Bonder JF, 2002, PUBL MAT, V46, P221
  • [7] Li GB, 2009, ACTA MATH SCI, V29, P903
  • [8] Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems
    Marano, Salvatore A.
    Papageorgiou, Nikolaos S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 : 118 - 129
  • [9] Mawhin J., 1989, Critical Point Theory and Hamiltonian Systems, V74
  • [10] Micheletti A. M., 2002, J DIFFER EQUATIONS, V184, P299