A note on Parisian ruin with an ultimate bankruptcy level for Levy insurance risk processes

被引:9
作者
Czarna, Irmina [1 ]
Renaud, Jean-Francois [2 ]
机构
[1] Univ Wroclaw, Dept Math, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Univ Quebec Montreal UQAM, Dept Math, 201 Ave President Kennedy, Montreal, PQ H2X 3Y7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Ruin theory; Parisian ruin; Spectrally negative Levy processes; Scale functions; OCCUPATION TIMES; PROBABILITY;
D O I
10.1016/j.spl.2016.02.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this short paper, we investigate a definition of Parisian ruin introduced in Czarna (2016), namely Parisian ruin with an ultimate bankruptcy level. We improve the results originally obtained and, moreover, we compute more general Parisian fluctuation identities. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 61
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 2014, INTRO LECT
[2]  
Baurdoux E. J., 2016, J APPL PROB IN PRESS, V53
[3]   Brownian excursions and Parisian barrier options [J].
Chesney, M ;
JeanblancPicque, M ;
Yor, M .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :165-184
[4]   Parisian ruin probability with a lower ultimate bankrupt barrier [J].
Czarna, Irmina .
SCANDINAVIAN ACTUARIAL JOURNAL, 2016, (04) :319-337
[5]   RUIN PROBABILITY WITH PARISIAN DELAY FOR A SPECTRALLY NEGATIVE LEVY RISK PROCESS [J].
Czarna, Irmina ;
Palmowski, Zbigniew .
JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) :984-1002
[6]   JOINT DISTRIBUTION OF A SPECTRALLY NEGATIVE LEVY PROCESS AND ITS OCCUPATION TIME, WITH STEP OPTION PRICING IN VIEW [J].
Guerin, Helene ;
Renaud, Jean-Francois .
ADVANCES IN APPLIED PROBABILITY, 2016, 48 (01) :274-297
[7]   On extreme ruinous behaviour of Levy insurance risk processes [J].
Klueppelberg, C. ;
Kyprianou, A. E. .
JOURNAL OF APPLIED PROBABILITY, 2006, 43 (02) :594-598
[8]  
Kuznetsov A., 2013, SPRINGER LECT NOTES
[9]  
Kyprianou AE, 2013, EAA SER, P1, DOI 10.1007/978-3-319-02303-8
[10]   An Insurance Risk Model with Parisian Implementation Delays [J].
Landriault, David ;
Renaud, Jean-Francois ;
Zhou, Xiaowen .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) :583-607