Further Progress on the Total Roman {2}-Domination Number of Graphs

被引:0
作者
Abdollahzadeh Ahangar, Hossein [1 ]
Chellali, Mustapha [2 ]
Hajjari, Maryam [3 ]
Sheikholeslami, Seyed Mahmoud [3 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Babol 4714871167, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Domination number; Total domination number; Total Roman {2}-domination number; DOMINATION;
D O I
10.1007/s41980-021-00565-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph Gamma, let gamma(Gamma), gamma(t)(Gamma), and gamma(t R2)(Gamma) denote the domination number, the total domination number, and the total Roman {2}-domination number, respectively. It was shown in Abdollahzadeh Ahangar et al. (Discuss Math Graph Theory, in press) that for each nontrivial connected graph Gamma, gamma(t)(Gamma) <= gamma(t R2)(Gamma) <= 3 gamma(Gamma). The problem that arises naturally is to characterize the graphs attaining each bound. For the left inequality, we establish a necessary and sufficient condition for nontrivial connected graphs Gamma with gamma(t R2)(Gamma) =gamma t(Gamma), and we characterize those graphs that are {C-3, C-6}free or block. For the right inequality, we present a necessary condition for nontrivial connected graphs Gamma with gamma(t R2)(Gamma) = 3 gamma (Gamma), and we characterize those graphs that are diameter-2 or trees.
引用
收藏
页码:1111 / 1119
页数:9
相关论文
共 50 条
  • [21] On the Secure Total Domination Number of Graphs
    Cabrera Martinez, Abel
    Montejano, Luis P.
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2019, 11 (09):
  • [22] Total domination number of middle graphs
    Kazemnejad, Farshad
    Pahlavsay, Behnaz
    Palezzato, Elisa
    Torielli, Michele
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 275 - 288
  • [23] TOTAL DOMINATION NUMBER OF CENTRAL GRAPHS
    Kazemnejad, Farshad
    Moradi, Somayeh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 1059 - 1075
  • [24] On the Total Domination Subdivision Number in Graphs
    Favaron, O.
    Karami, H.
    Khoeilar, R.
    Sheikholeslami, S. M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (01) : 173 - 180
  • [25] Total outer-convex domination number of graphs
    Yangyang, Rubelyn
    Tarongoy, Marylin
    Revilla, Evangelyn
    Banlasan, Rona Mae
    Dayap, Jonecis
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (01) : 59 - 68
  • [26] TREES WITH EQUAL ROMAN {2}-DOMINATION NUMBER AND INDEPENDENT ROMAN {2}-DOMINATION NUMBER
    Wu, Pu
    Li, Zepeng
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    RAIRO-OPERATIONS RESEARCH, 2019, 53 (02) : 389 - 400
  • [27] On the total domination number of cross products of graphs
    Ei-Zahar, Mohamed
    Gravier, Sylvain
    Klobucar, Antoaneta
    DISCRETE MATHEMATICS, 2008, 308 (10) : 2025 - 2029
  • [28] A note on Roman domination in graphs
    Xing, Hua-Ming
    Chen, Xin
    Chen, Xue-Gang
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3338 - 3340
  • [29] Disjunctive Total Domination Subdivision Number of Graphs
    Ciftci, Canan
    Aytac, Vecdi
    FUNDAMENTA INFORMATICAE, 2020, 174 (01) : 15 - 26
  • [30] On the independence transversal total domination number of graphs
    Cabrera Martinez, Abel
    Sigarreta Almira, Jose M.
    Yero, Ismael G.
    DISCRETE APPLIED MATHEMATICS, 2017, 219 : 65 - 73