Further Progress on the Total Roman {2}-Domination Number of Graphs

被引:0
|
作者
Abdollahzadeh Ahangar, Hossein [1 ]
Chellali, Mustapha [2 ]
Hajjari, Maryam [3 ]
Sheikholeslami, Seyed Mahmoud [3 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Babol 4714871167, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Domination number; Total domination number; Total Roman {2}-domination number; DOMINATION;
D O I
10.1007/s41980-021-00565-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph Gamma, let gamma(Gamma), gamma(t)(Gamma), and gamma(t R2)(Gamma) denote the domination number, the total domination number, and the total Roman {2}-domination number, respectively. It was shown in Abdollahzadeh Ahangar et al. (Discuss Math Graph Theory, in press) that for each nontrivial connected graph Gamma, gamma(t)(Gamma) <= gamma(t R2)(Gamma) <= 3 gamma(Gamma). The problem that arises naturally is to characterize the graphs attaining each bound. For the left inequality, we establish a necessary and sufficient condition for nontrivial connected graphs Gamma with gamma(t R2)(Gamma) =gamma t(Gamma), and we characterize those graphs that are {C-3, C-6}free or block. For the right inequality, we present a necessary condition for nontrivial connected graphs Gamma with gamma(t R2)(Gamma) = 3 gamma (Gamma), and we characterize those graphs that are diameter-2 or trees.
引用
收藏
页码:1111 / 1119
页数:9
相关论文
共 50 条
  • [1] Further Results on the Total Roman Domination in Graphs
    Cabrera Martinez, Abel
    Cabrera Garcia, Suitberto
    Carrion Garcia, Andres
    MATHEMATICS, 2020, 8 (03)
  • [2] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [3] On the strong Roman domination number of graphs
    Alvarez-Ruiz, M. P.
    Mediavilla-Gradolph, T.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    Yero, I. G.
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 44 - 59
  • [4] Algorithmic aspects of total Roman {2}-domination in graphs
    Chakradhar, P.
    Reddy, P. Venkata Subba
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 183 - 192
  • [5] DOMINATION NUMBER OF TOTAL GRAPHS
    Shariatinia, Abbas
    Maimani, Hamid Reza
    Yassemi, Siamak
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1527 - 1535
  • [6] Total Roman {3}-domination in Graphs
    Shao, Zehui
    Mojdeh, Doost Ali
    Volkmann, Lutz
    SYMMETRY-BASEL, 2020, 12 (02):
  • [7] Signed total Roman domination in graphs
    Lutz Volkmann
    Journal of Combinatorial Optimization, 2016, 32 : 855 - 871
  • [8] Total double Roman domination in graphs
    Hao, Guoliang
    Volkmann, Lutz
    Mojdeh, Doost Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2020, 5 (01) : 27 - 39
  • [9] Signed total Roman domination in graphs
    Volkmann, Lutz
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 855 - 871
  • [10] Lower bounds for the domination number and the total domination number of direct product graphs
    Mekis, Gasper
    DISCRETE MATHEMATICS, 2010, 310 (23) : 3310 - 3317