Molecular Simulation for Adsorption and Separation of CH4/H2 in Zeolitic Imidazolate Frameworks

被引:98
作者
Guo, Hai-chao [1 ]
Shi, Fan [2 ]
Ma, Zheng-fei [1 ]
Liu, Xiao-qin [1 ]
机构
[1] Nanjing Univ Technol, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
METAL-ORGANIC FRAMEWORKS; MONTE-CARLO-SIMULATION; FORCE-FIELD; PORE-SIZE; CU-BTC; HYDROGEN; STORAGE; MEMBRANES; MIXTURES; METHANE;
D O I
10.1021/jp908978q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the grand canonical Monte Carlo method was employed to study the adsorption and separation characteristics of CH4/H-2 on MOF-5 and five zeolitic imidazolate frameworks (ZIFs), including two sodalite (SOD), ZIF-8 and -67, two merlinoite (MER), ZIF-10 and -60, and one DFT, ZIF-3. Simulations show that more CH4 molecules are adsorbed in all frameworks than H-2, which is consistent with a higher pure gas isosteric heat of adsorption of CH4 as compared with that of H-2. For both gases, adsorbed amounts primarily rely on the physical and chemical parameters of the adsorbent. Results of density distribution profiles and equilibrium snapshots of the ZIFs indicate that the most preferential gas adsorption sites for both CH4 and H-2 are the positions near linkers. At high pressures, CH4 begins to fill up in the center of the SOD cage. We also found that the selectivity for CH4 increased with the difference between the isosteric heats of adsorption of CH4 and H-2, Delta qst, but decreased to some extent due to the packing effect. Both the isosteric heats of adsorption and the packing effect are mainly influenced by the topology of the framework.
引用
收藏
页码:12158 / 12165
页数:8
相关论文
共 43 条
[1]   Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1:: A comparative study from monte carlo simulation [J].
Babarao, Ravichandar ;
Hu, Zhongqiao ;
Jiang, Jianwen ;
Chempath, Shaji ;
Sandler, Stanley I. .
LANGMUIR, 2007, 23 (02) :659-666
[2]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[3]   Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J].
Banerjee, Rahul ;
Furukawa, Hiroyasu ;
Britt, David ;
Knobler, Carolyn ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (11) :3875-+
[4]   PATH-INTEGRAL SIMULATIONS OF MIXED PARA-D-2 AND ORTHO-D-2 CLUSTERS - THE ORIENTATIONAL EFFECTS [J].
BUCH, V .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7610-7629
[5]   Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis [J].
Bux, Helge ;
Liang, Fangyi ;
Li, Yanshuo ;
Cravillon, Janosch ;
Wiebcke, Michael ;
Caro, Juergen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (44) :16000-+
[6]   Assessment of isoreticular metal-organic frameworks for adsorption separations:: A molecular simulation study of methane/n-butane mixtures [J].
Düren, T ;
Snurr, RQ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) :15703-15708
[7]   Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J].
Eddaoudi, M ;
Kim, J ;
Rosi, N ;
Vodak, D ;
Wachter, J ;
O'Keeffe, M ;
Yaghi, OM .
SCIENCE, 2002, 295 (5554) :469-472
[8]   Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks [J].
Frost, Houston ;
Dueren, Tina ;
Snurr, Randall Q. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (19) :9565-9570
[9]   Adsorption of guest molecules in zeolitic materials: Computational aspects [J].
Fuchs, AH ;
Cheetham, AK .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (31) :7375-7383
[10]   Fuel Gas Storage and Separations by Metal-Organic Frameworks: Simulated Adsorption Isotherms for H2 and CH4 and Their Equimolar Mixture [J].
Gallo, Marco ;
Glossman-Mitnik, Daniel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (16) :6634-6642