Stock Price Forecasting Using Deep Learning Model

被引:4
|
作者
Khan, Shahnawaz [1 ]
Rabbani, Mustafa Raza [2 ]
Bashar, Abu [3 ]
Kamal, Mustafa [4 ]
机构
[1] Bahrain Polytech, Fac Engn Design & Informat & Commun Technol, Isa Town, Bahrain
[2] Univ Bahrain, Sakheer, Bahrain
[3] IMS Unison Univ, Dehra Dun, Uttarakhand, India
[4] Saudi Elect Univ, Coll Sci & Theoret Studies, Dammam, Saudi Arabia
来源
2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA) | 2021年
关键词
Deep Learning; Long short-term memory; forecasting; stock prices; Neural Network;
D O I
10.1109/DASA53625.2021.9682319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The successful prediction of future stock prices can give significant future profit. The financial experts are divided over the possibility of correct prediction of future stock prices. A stronger view supports the efficient market hypothesis, which suggests that current stock prices reflect all the available information, and it is not possible to predict the future stock prices. However, it is possible to predict the stock price trends. The proposed study presents a long short-term memory (LSTM) network model using sequence to sequence regression techniques to predict future stock prices. LSTM is a deep learning method. The study uses Aluminium Bahrain's (ALBA) ten-year stock price data from December 2010 to August 2021. The study concludes that using the LSTM model, it is possible to predict the trends for future stock prices. The model achieved an accuracy of root mean square error of 0.1684 during the training process and during the testing process, the RMSE accuracy achieved was 0.007. The study is expected to help investors, financial institutions, and financial market experts in predicting the trend of future stock prices.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Thai Morning Glory Price Forecasting Using Deep Learning
    Waeodi, Kanokwan
    Boongasame, Laor
    Thammarak, Karanrat
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2025, 2025 (01)
  • [32] Stock price prediction: comparison of different moving average techniques using deep learning model
    Billah, Md Masum
    Sultana, Azmery
    Bhuiyan, Farzana
    Kaosar, Mohammed Golam
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (11) : 5861 - 5871
  • [33] STOCK MARKET ANALYSIS AND PRICE PREDICTION USING DEEP LEARNING AND ARTIFICIAL NEURAL NETWORKS
    Medic, Tomislav
    Pejic Bach, Mirjana
    Jakovic, Bozidar
    PROCEEDINGS OF FEB ZAGREB 11TH INTERNATIONAL ODYSSEY CONFERENCE ON ECONOMICS AND BUSINESS, 2020, 2 (01): : 450 - 462
  • [34] Forecasting stock market crisis events using deep and statistical machine learning techniques
    Chatzis, Sotirios P.
    Siakoulis, Vassilis
    Petropoulos, Anastasios
    Stavroulakis, Evangelos
    Vlachogiannakis, Nikos
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 112 : 353 - 371
  • [35] Cryptocurrency Investments Forecasting Model Using Deep Learning Algorithms
    Enco, Leonardo
    Mederos, Alexander
    Paipay, Alejandro
    Pizarro, Daniel
    Marecos, Hernan
    Ticona, Wilfredo
    ARTIFICIAL INTELLIGENCE ALGORITHM DESIGN FOR SYSTEMS, VOL 3, 2024, 1120 : 202 - 217
  • [36] Stock price prediction: comparison of different moving average techniques using deep learning model
    Md Masum Billah
    Azmery Sultana
    Farzana Bhuiyan
    Mohammed Golam Kaosar
    Neural Computing and Applications, 2024, 36 : 5861 - 5871
  • [37] Locational Marginal Price Forecasting Using Deep Learning Network Optimized by Mapping-Based Genetic Algorithm
    Hong, Ying-Yi
    Taylar, Jonathan, V
    Fajardo, Arnel C.
    IEEE ACCESS, 2020, 8 : 91975 - 91988
  • [38] Deep Learning for Forecasting Stock Returns in the Cross-Section
    Abe, Masaya
    Nakayama, Hideki
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 273 - 284
  • [39] Application of Deep Learning in Stock Market Valuation Index Forecasting
    Li, Ge
    Xiao, Ming
    Guo, Ying
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 551 - 554
  • [40] Predicting Stock Market Price: A Logical Strategy using Deep Learning
    Biswas, Milon
    Shome, Atanu
    Islam, Md Ashraful
    Nova, Arafat Jahan
    Ahmed, Shamim
    11TH IEEE SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE 2021), 2021, : 218 - 223