Stock Price Forecasting Using Deep Learning Model

被引:4
|
作者
Khan, Shahnawaz [1 ]
Rabbani, Mustafa Raza [2 ]
Bashar, Abu [3 ]
Kamal, Mustafa [4 ]
机构
[1] Bahrain Polytech, Fac Engn Design & Informat & Commun Technol, Isa Town, Bahrain
[2] Univ Bahrain, Sakheer, Bahrain
[3] IMS Unison Univ, Dehra Dun, Uttarakhand, India
[4] Saudi Elect Univ, Coll Sci & Theoret Studies, Dammam, Saudi Arabia
来源
2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA) | 2021年
关键词
Deep Learning; Long short-term memory; forecasting; stock prices; Neural Network;
D O I
10.1109/DASA53625.2021.9682319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The successful prediction of future stock prices can give significant future profit. The financial experts are divided over the possibility of correct prediction of future stock prices. A stronger view supports the efficient market hypothesis, which suggests that current stock prices reflect all the available information, and it is not possible to predict the future stock prices. However, it is possible to predict the stock price trends. The proposed study presents a long short-term memory (LSTM) network model using sequence to sequence regression techniques to predict future stock prices. LSTM is a deep learning method. The study uses Aluminium Bahrain's (ALBA) ten-year stock price data from December 2010 to August 2021. The study concludes that using the LSTM model, it is possible to predict the trends for future stock prices. The model achieved an accuracy of root mean square error of 0.1684 during the training process and during the testing process, the RMSE accuracy achieved was 0.007. The study is expected to help investors, financial institutions, and financial market experts in predicting the trend of future stock prices.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Stock Price Prediction Model Based on Investor Sentiment and Optimized Deep Learning
    Mu, Guangyu
    Gao, Nan
    Wang, Yuhan
    Dai, Li
    IEEE ACCESS, 2023, 11 : 51353 - 51367
  • [22] Characteristic mango price forecasting using combined deep-learning optimization model
    Ma, Xiaoya
    Tong, Jin
    Huang, Wu
    Lin, Haitao
    PLOS ONE, 2023, 18 (04):
  • [23] A novel crude oil price forecasting model using decomposition and deep learning networks
    Dong, Yao
    Jiang, He
    Guo, Yunting
    Wang, Jianzhou
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [24] Forecasting the Volatility of the Stock Index with Deep Learning Using Asymmetric Hurst Exponents
    Cho, Poongjin
    Lee, Minhyuk
    FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [25] Short Term Stock Price Prediction Using Deep Learning
    Khare, Kaustubh
    Darekar, Omkar
    Gupta, Prafull
    Attar, V. Z.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 482 - 486
  • [26] Deep Learning for Stock Price Prediction and Portfolio Optimization
    Sebastian, Ashy
    Tantia, Dr. Veerta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (09) : 926 - 941
  • [27] Applicability of Deep Learning Models for Stock Price Forecasting An Empirical Study on BANKEX Data
    Balaji, A. Jayanth
    Ram, D. S. Harish
    Nair, Binoy B.
    8TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2018), 2018, 143 : 947 - 953
  • [28] A Survey of Forex and Stock Price Prediction Using Deep Learning
    Hu, Zexin
    Zhao, Yiqi
    Khushi, Matloob
    APPLIED SYSTEM INNOVATION, 2021, 4 (01)
  • [29] Forecasting Directional Movement of Stock Prices using Deep Learning
    Chandola D.
    Mehta A.
    Singh S.
    Tikkiwal V.A.
    Agrawal H.
    Annals of Data Science, 2023, 10 (05) : 1361 - 1378
  • [30] Power Market Price Forecasting via Deep Learning
    Zhu, Yongli
    Dai, Renchang
    Liu, Guangyi
    Wang, Zhiwei
    Lu, Songtao
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 4935 - 4939