McKay correspondence and Hilbert schemes in dimension three

被引:51
作者
Ito, Y [1 ]
Nakajima, H
机构
[1] Tokyo Metropolitan Univ, Dept Math, Tokyo 1920397, Japan
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
D O I
10.1016/S0040-9383(99)00003-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a nontrivial finite subgroup of SLn (C). Suppose that the quotient singularity C-n/G has a crepant resolution pi: X --> C-n/G (i.e. K-X = O-X). There is a slightly imprecise conjecture, called the McKay correspondence, stating that there is a relation between the Grothendieck group (or (co)homology group) of X and the representations (or conjugacy classes) of G with a "certain compatibility" between the intersection product and the tensor product (see e.g. [22]). The purpose of this paper is to give more precise formulation of the conjecture when X can be given as a certain variety associated with the Hilbert scheme of points in C-n. We give the proof of this new conjecture for an abelian subgroup G of SL3 (C). (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1155 / 1191
页数:37
相关论文
共 26 条
[11]   McKay correspondence and Hilbert schemes [J].
Ito, Y ;
Nakamura, I .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (07) :135-138
[12]  
ITO Y, 1994, P INT C TRENT, P221
[13]  
IVERSEN B, 1976, ANN SCI ECOLE NORM S, V9, P155
[14]  
Kapranov M., 1993, Adv. Soviet Math, V16, P29
[15]  
KRONHEIMER PB, 1989, J DIFFER GEOM, V29, P665
[16]   YANG-MILLS INSTANTONS ON ALE GRAVITATIONAL INSTANTONS [J].
KRONHEIMER, PB ;
NAKAJIMA, H .
MATHEMATISCHE ANNALEN, 1990, 288 (02) :263-307
[17]  
MCKAY J, 1980, P SYMP PURE MATH, V37, P183
[18]   Instantons and affine Lie algebras [J].
Nakajima, H .
NUCLEAR PHYSICS B, 1996, :154-161
[19]   Quiver varieties and Kac-Moody algebras [J].
Nakajima, H .
DUKE MATHEMATICAL JOURNAL, 1998, 91 (03) :515-560
[20]   INSTANTONS ON ALE SPACES, QUIVER VARIETIES, AND KAC-MOODY ALGEBRAS [J].
NAKAJIMA, H .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (02) :365-416