Robust Delay-dependent Exponential Stability of Uncertain Stochastic System with Time-varying Delay

被引:18
作者
Hua, Mingang [1 ,2 ]
Deng, Feiqi [3 ]
Liu, Xinzhi [1 ]
Peng, Yunjian [3 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Hohai Univ, Coll Comp & Informat, Changzhou 213022, Peoples R China
[3] S China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic system; Exponential stability; Linear matrix inequality (LMI); IMPULSIVE SYSTEMS; CRITERIA; STABILIZATION;
D O I
10.1007/s00034-010-9159-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses the problem of robust delay-dependent exponential stability for a class of uncertain stochastic systems with time-varying delay. The uncertainty is assumed to be of norm-bounded form. A less conservative robust exponential stability condition is derived by using a new Lyapunov-Krasovskii functional and a free-weighting matrix method in terms of linear matrix inequalities. Two numerical examples are given to illustrate the effectiveness of the proposed method.
引用
收藏
页码:515 / 526
页数:12
相关论文
共 22 条
[1]  
[Anonymous], 1997, DIFFERENTIAL EQUATIO
[2]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[3]   Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: an LMI approach [J].
Chen, WH ;
Guan, ZH ;
Lu, XM .
SYSTEMS & CONTROL LETTERS, 2005, 54 (06) :547-555
[4]   Mean square exponential stability of uncertain stochastic delayed neural networks [J].
Chen, Wu-Hua ;
Lu, Xiaomei .
PHYSICS LETTERS A, 2008, 372 (07) :1061-1069
[5]   Robust energy-to-peak filter design for stochastic time-delay systems [J].
Gao, HJ ;
Lam, J ;
Wang, CH .
SYSTEMS & CONTROL LETTERS, 2006, 55 (02) :101-111
[6]   Discrete bilinear stochastic systems with time-varying delay: Stability analysis and control synthesis [J].
Gao, Huijun ;
Lam, James ;
Wang, Zidong .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :394-404
[7]  
GU K., 2003, CONTROL ENGN SER BIR
[8]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[9]   Delay-range-dependent stability for systems with time-varying delay [J].
He, Yong ;
Wang, Qing-Guo ;
Lin, Chong ;
Wu, Min .
AUTOMATICA, 2007, 43 (02) :371-376
[10]   New delay-dependent stability criteria for neural networks with time-varying delay [J].
He, Yong ;
Liu, Guoping ;
Rees, D. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (01) :310-314