Quotients of cluster categories

被引:21
作者
Jorgensen, Peter [1 ]
机构
[1] Newcastle Univ, Sch Math & Stat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
TRIANGULATED CATEGORIES; TILTED ALGEBRAS; MUTATION; QUIVERS; SEEDS;
D O I
10.1017/S0308210508000425
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Higher cluster categories were recently introduced as a generalization of cluster categories. This paper shows that in Dynkin types A and D, half of all higher cluster categories can he obtained as quotients of cluster categories. The other Half are quotients of 2-cluster categories, the 'lowest' type of higher cluster categories. Hence; in Dynkin types A and D, all higher cluster phenomena are implicit in cluster categories and 2-cluster categories. In contrast, the same is not true in Dynkin type F.
引用
收藏
页码:65 / 81
页数:17
相关论文
共 40 条
[1]   ON THE STRUCTURE OF TRIANGULATED CATEGORIES WITH FINITELY MANY INDECOMPOSABLES [J].
Amiot, Claire .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2007, 135 (03) :435-474
[2]   m-cluster categories and m-replicated algebras [J].
Assem, I. ;
Brustle, T. ;
Schiffler, R. ;
Todorov, G. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (04) :884-901
[3]   Cluster categories and duplicated algebras [J].
Assem, I. ;
Brustle, T. ;
Schiffler, R. ;
Todorov, G. .
JOURNAL OF ALGEBRA, 2006, 305 (01) :548-561
[4]  
Auslander M., 1997, Representation Theory of Artin Algebras, V36
[5]   A Geometric Description of the m-cluster Categories of Type Dn [J].
Baur, Karin ;
Marsh, Robert J. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[6]   A geometric description of m-cluster categories [J].
Baur, Karin ;
Marsh, Robert J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) :5789-5803
[7]   LEFT TRIANGULATED CATEGORIES ARISING FROM CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
BELIGIANNIS, A ;
MARMARIDIS, N .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :5021-5036
[8]   Relative homological algebra and purity in triangulated categories [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2000, 227 (01) :268-361
[9]  
Beligiannis A., 2007, MEMOIRS AM MATH SOC, V188
[10]   Cluster algebras III: Upper bounds and double Bruhat cells [J].
Berenstein, A ;
Fomin, S ;
Zelevinsky, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :1-52