Microstructure and mechanical properties of TiN particles strengthened 316L steel prepared by laser melting deposition process

被引:54
作者
Wang, Ye [1 ]
Liu, Zhenghao [1 ]
Zhou, Yuzhao [1 ]
Yang, Xiaoshan [1 ]
Tang, Jingang [2 ]
Liu, Xue [1 ]
Li, Jinfeng [1 ]
Le, Guomin [1 ]
机构
[1] China Acad Engn Phys, Inst Mat, Mianyang 621908, Sichuan, Peoples R China
[2] China Acad Engn Phys, Inst Machinery Mfg Technol, Mianyang 621900, Sichuan, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 814卷
基金
中国国家自然科学基金;
关键词
Laser additive manufacturing; 316L steel; TiN particles; Microstructure; Mechanical properties; STAINLESS-STEEL; TENSILE PROPERTIES; MATRIX COMPOSITES; NANOCOMPOSITES; EVOLUTION; BEHAVIOR; CARBIDE; PARTS;
D O I
10.1016/j.msea.2021.141220
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Large columnar grains of 316L stainless steel prepared by laser melting deposition (LMD) additive manufacturing process lead to low yield strength and anisotropic mechanical properties, therefore limit its usage. In this study, different contents of nanoscale TiN particles (0 wt%, 2 wt%, 4 wt% and 6 wt%) have been added into the LMD process of 316L steel to promote heterogeneous nucleations of grains, and to improve the strength. The results show that the TiN particles additions can refine the grain sizes significantly, and prompt columnar to equiaxed transitions of grains. The grain sizes can be refined more than 20 times after adding 2 wt% TiN particles. The strength of the 316L-based composites increases with the increase of TiN addition, however, at the expense of ductility. With 2 wt% TiN particle addition, the 316L-based composite can have balanced mechanical properties with high yield strength of 323?355 MPa, high tensile strength of 629?640 MPa, and good elongations of 26?30%. The strength improvements are quantitatively analyzed considering the Hall-Petch strengthening, Orowan strengthening, thermal mismatch strengthening, and load transfer strengthening. The calculations agree well with the experimental values, and reveal that the grain refinement strengthening is the main strengthening mechanism. The present study provides an important basis for fabricating high strength 316L-based composites using the LMD process.
引用
收藏
页数:8
相关论文
共 50 条
[1]  
Adzali Nur Maizatul Shima, 2020, Materials Science Forum, V1010, P28, DOI 10.4028/www.scientific.net/MSF.1010.28
[2]   An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system [J].
Akbari, Meysam ;
Kovacevic, Radovan .
ADDITIVE MANUFACTURING, 2018, 23 :487-497
[3]   Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods [J].
Akbarpour, M. R. ;
Mirabad, H. Mousa ;
Alipour, S. ;
Kim, H. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
[4]   Influence of microstructure on mechanical properties of laser metal wire-deposited Ti-6Al-4V [J].
Akerfeldt, Pia ;
Antti, Marta-Lena ;
Pederson, Robert .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 674 :428-437
[5]   Novel TiB2-reinforced 316L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing [J].
AlMangour, Bandar ;
Kim, Young-Kyun ;
Grzesiak, Dariusz ;
Lee, Kee-Ahn .
COMPOSITES PART B-ENGINEERING, 2019, 156 :51-63
[6]   Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J].
AlMangour, Bandar ;
Baek, Min-Seok ;
Grzesiak, Dariusz ;
Lee, Kee-Ahn .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 712 :812-818
[7]   Rapid fabrication of bulk-form TiB2/316L stainless steel nanocomposites with novel reinforcement architecture and improved performance by selective laser melting [J].
AlMangour, Bandar ;
Grzesiak, Dariusz ;
Yang, Jenn-Ming .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 680 :480-493
[8]   Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties [J].
Azarniya, Abolfazl ;
Colera, Xabier Garmendia ;
Mirzaali, Mohammad J. ;
Sovizi, Saeed ;
Bartolomeu, Flavio ;
Weglowski, Marek St ;
Wits, Wessel W. ;
Yap, Chor Yen ;
Ahn, Joseph ;
Miranda, Georgina ;
Silva, Filipe Samuel ;
Hosseini, Hamid Reza Madaah ;
Ramakrishna, Seeram ;
Zadpoor, Amir A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 804 :163-191
[9]   EFFECT OF CARBIDE AND NITRIDE ADDITIONS ON HETEROGENEOUS NUCLEATION BEHAVIOR OF LIQUID IRON [J].
BRAMFITT, BL .
METALLURGICAL TRANSACTIONS, 1970, 1 (07) :1987-&
[10]   Metal Matrix Composites Reinforced by Nano-Particles-A Review [J].
Casati, Riccardo ;
Vedani, Maurizio .
METALS, 2014, 4 (01) :65-83