Persistence stability for geometric complexes

被引:125
作者
Chazal, Frederic [1 ]
de Silva, Vin [2 ]
Oudot, Steve [1 ]
机构
[1] INRIA Saclay, Palaiseau, France
[2] Pomona Coll, Claremont, CA 91711 USA
基金
美国国家科学基金会;
关键词
Persistent homology; Vietoris-Rips complex; Cech complex; Gromov-Hausdorff distance; METRIC-SPACES;
D O I
10.1007/s10711-013-9937-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the properties of the homology of different geometric filtered complexes (such as Vietoris-Rips, ech and witness complexes) built on top of totally bounded metric spaces. Using recent developments in the theory of topological persistence, we provide simple and natural proofs of the stability of the persistent homology of such complexes with respect to the Gromov-Hausdorff distance. We also exhibit a few noteworthy properties of the homology of the Rips and ech complexes built on top of compact spaces.
引用
收藏
页码:193 / 214
页数:22
相关论文
共 18 条
[1]  
[Anonymous], 2012, ARXIV PREPRINT ARXIV
[2]  
[Anonymous], 2001, ALGEBRAIC TOPOLOGY
[3]  
[Anonymous], 2010, Computational topology: An introduction
[4]  
Attali D, 2011, COMPUTATIONAL GEOMETRY (SCG 11), P491
[5]   Hodge Theory on Metric Spaces [J].
Bartholdi, Laurent ;
Schick, Thomas ;
Smale, Nat ;
Smale, Steve .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (01) :1-48
[6]  
Burago D., 2001, GEOMETRY GRADUATE ST, V33
[7]   Towards Persistence-Based Reconstruction in Euclidean Spaces [J].
Chazal, Frederic ;
Oudot, Steve Y. .
PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, :232-241
[8]   Gromov-Hausdorff Stable Signatures for Shapes using Persistence [J].
Chazal, Frederic ;
Cohen-Steiner, David ;
Guibas, Leonidas J. ;
Memoli, Facundo ;
Oudot, Steve Y. .
COMPUTER GRAPHICS FORUM, 2009, 28 (05) :1393-1403
[9]   Proximity of Persistence Modules and their Diagrams [J].
Chazal, Frederic ;
Cohen-Steiner, David ;
Glisse, Marc ;
Guibas, Leonidas J. ;
Oudot, Steve Y. .
PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, :237-246
[10]   HOMOLOGY GROUPS OF RELATIONS [J].
DOWKER, CH .
ANNALS OF MATHEMATICS, 1952, 56 (01) :84-95