Regular Bernstein blocks

被引:5
作者
Adler, Jeffrey D. [1 ]
Mishra, Manish [2 ]
机构
[1] Amer Univ, Dept Math & Stat, 4400 Massachusetts Ave NW, Washington, DC 20016 USA
[2] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2021年 / 775卷
关键词
P-ADIC GROUPS; HECKE ALGEBRAS; PRINCIPAL SERIES; REPRESENTATIONS;
D O I
10.1515/crelle-2021-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected reductive group G defined over a non-archimedean local field F, we consider the Bernstein blocks in the category of smooth representations of G(F). Bernstein blocks whose cuspidal support involves a regular supercuspidal representation are called regular Bernstein blocks. Most Bernstein blocks are regular when the residual characteristic of F is not too small. Under mild hypotheses on the residual characteristic, we show that the Bernstein center of a regular Bernstein block of G(F) is isomorphic to the Bernstein center of a regular depth-zero Bernstein block of G(0)(F), where G(0) is a certain twisted Levi subgroup of G. In some cases, we show that the blocks themselves are equivalent, and as a consequence we prove the ABPS Conjecture in some new cases.
引用
收藏
页码:71 / 86
页数:16
相关论文
共 26 条
[1]   An intertwining result for p-adic groups [J].
Adler, JD ;
Roche, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (03) :449-467
[2]   MULTIPLICITY UPON RESTRICTION TO THE DERIVED SUBGROUP [J].
Adler, Jeffrey D. ;
Prasad, Dipendra .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 301 (01) :1-14
[3]  
[Anonymous], 2009, FIELDS I MONOGR
[4]   Conjectures about p-adic groups and their noncommutative geometry [J].
Aubert, Anne-Marie ;
Baum, Paul ;
Plymen, Roger ;
Solleveld, Maarten .
AROUND LANGLANDS CORRESPONDENCES, 2017, 691 :15-51
[5]   The principal series of p-adic groups with disconnected center [J].
Aubert, Anne-Marie ;
Baum, Paul ;
Plymen, Roger ;
Solleveld, Maarten .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 :798-854
[6]  
Bernstein J. N., 1984, Le "centre"de Bernstein, Representations of Reductive Groups Over a Local Field, P1
[7]   Generalized Whittaker models and the Bernstein center [J].
Bushnell, CJ ;
Henniart, G .
AMERICAN JOURNAL OF MATHEMATICS, 2003, 125 (03) :513-547
[8]   Smooth representations of reductive p-adic groups: Structure theory via types [J].
Bushnell, CJ ;
Kutzko, PC .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :582-634
[9]   On multiplicity in restriction of tempered representations of p-adic groups [J].
Choiy, Kwangho .
MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) :449-471
[10]  
Fintzen J., 2019, TAME CUSPIDAL REPRES