Emerging Energy Harvesting Materials and Devices for Self-Powered Water Disinfection

被引:16
|
作者
Huo, Zheng-Yang [1 ]
Lee, Dong-Min [1 ]
Wang, Si [1 ,2 ]
Kim, Young-Jun [1 ]
Kim, Sang-Woo [1 ,3 ,4 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[2] Univ Elect Sci & Technol China UESTC, Sch Optoelect Sci & Engn, Chengdu 610054, Peoples R China
[3] Sungkyunkwan Univ SKKU, SKKU Adv Inst Nanotechnol SAINT, Suwon 16419, South Korea
[4] Sungkyunkwan Univ SKKU, Samsung Adv Inst Hlth Sci & Technol SAIHST, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
energy harvesting; microbial inactivation; self-powered water disinfection; virus; waterborne pathogens; LOW-VOLTAGE ELECTROPORATION; LIGHT-EMITTING-DIODES; ELECTROCHEMICAL DISINFECTION; TRIBOELECTRIC NANOGENERATORS; HIGH-EFFICIENCY; BY-PRODUCTS; INACTIVATION; CELL; STERILIZATION; PERFORMANCE;
D O I
10.1002/smtd.202100093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Contaminated drinking water is one of the main pathogen transmission pathways making waterborne illnesses such as diarrheal diseases and gastroenteritis a huge threat to public health, especially in the areas where sanitation facilities and gird power are inadequate such as rural and disaster hit areas. Self-powered water disinfection systems are a promising solution in these cases. In this review paper, the authors provide an overview of the new and emerging methods of applying energy harvesting materials and devices as a source of power for water disinfection systems microbial disinfection in water by harnessing ambient forms of energy such as mechanical motion, light, and heat into electricity. The authors begin with a brief introduction of the different energy harvesting technologies commonly applied in water disinfection; triboelectric, piezoelectric, pyroelectric, and photovoltaic effects. Various microbial disinfection mechanisms and types of device construction are summarized. Then, a detailed discussion of the energy harvester-driven water disinfection process is provided. Finally, challenges and perspectives regarding the future development of self-powered water disinfection are described.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Self-powered skin electronics for energy harvesting and healthcare monitoring
    Wu, M.
    Yao, K.
    Li, D.
    Huang, X.
    Liu, Y.
    Wang, L.
    Song, E.
    Yu, J.
    Yu, X.
    MATERIALS TODAY ENERGY, 2021, 21
  • [32] Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting
    Shirvanimoghaddam, Mahyar
    Shirvanimoghaddam, Kamyar
    Abolhasani, Mohammad Mahdi
    Farhangi, Majid
    Barsari, Vahid Zahiri
    Liu, Hangyue
    Dohler, Mischa
    Naebe, Minoo
    IEEE ACCESS, 2019, 7 : 94533 - 94556
  • [33] Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor
    Ng, TH
    Liao, WH
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2005, 16 (10) : 785 - 797
  • [34] An Innovative Concept: Free Energy Harvesting Through Self-Powered Triboelectric Nanogenerator
    Hussain, Izhar
    Khan, Saeed Ahmed
    Lakho, Shamsuddin
    Shah, Madad Ali
    Ali, Ahmed
    Altameem, Torki
    Fouad, H.
    Akhtar, M. S.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (11) : 1844 - 1849
  • [35] Self-powered smart blade: Helicopter blade energy harvesting
    Bryant, Matthew
    Fang, Austin
    Garcia, Ephrahim
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2010, PTS 1 AND 2, 2010, 7643
  • [36] Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications
    Sahu, Manisha
    Hajra, Sugato
    Kim, Hang-Gyeom
    Rubahn, Horst-Gunter
    Mishra, Yogendra Kumar
    Kim, Hoe Joon
    NANO ENERGY, 2021, 88
  • [37] Design Optimization of an Energy Harvesting Platform for Self-Powered Wireless Devices in Monitoring of AC Power Lines
    Abasian, Alireza
    Tabesh, Ahmadreza
    Nezhad, Abolghasem Zeidaabadi
    Rezaei-Hosseinabadi, Nasrin
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (12) : 10308 - 10316
  • [38] Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter
    Su, Yuanjie
    Wen, Xiaonan
    Zhu, Guang
    Yang, Jin
    Chen, Jun
    Bai, Peng
    Wu, Zhiming
    Jiang, Yadong
    Wang, Zhong Lin
    NANO ENERGY, 2014, 9 : 186 - 195
  • [39] Dual-Mode Triboelectric Nanogenerator for Harvesting Water Energy and as a Self-Powered Ethanol Nanosensor
    Lin, Zong-Hong
    Cheng, Gang
    Wu, Wenzhuo
    Pradel, Ken C.
    Wang, Zhong Lin
    ACS NANO, 2014, 8 (06) : 6440 - 6448
  • [40] Implantable Self-Powered Systems for Electrical Stimulation Medical Devices
    Cui, Xi
    Wu, Li
    Zhang, Chao
    Li, Zhou
    ADVANCED SCIENCE, 2024,