Non-equilibrium ultrashort pulse generation strategies in VECSELs

被引:17
作者
Kilen, I. [1 ]
Koch, S. W. [2 ,3 ,4 ]
Hader, J. [2 ,5 ]
Moloney, J. V. [1 ,2 ,5 ,6 ]
机构
[1] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Coll Opt Sci, 1630 East Univ Blvd, Tucson, AZ 85721 USA
[3] Philipps Univ Marburg, Dept Phys, Renthof 5, D-35032 Marburg, Germany
[4] Philipps Univ Marburg, Mat Sci Ctr, Renthof 5, D-35032 Marburg, Germany
[5] Nonlinear Control Strategies Inc, Tucson, AZ 85704 USA
[6] Univ Arizona, Dept Math, 617 N Santa Rita Ave, Tucson, AZ 85721 USA
来源
OPTICA | 2017年 / 4卷 / 04期
关键词
SURFACE-EMITTING LASER; SEMICONDUCTOR-LASER; OUTPUT POWER; MODE-LOCKING; DISK LASER; ULTRAFAST;
D O I
10.1364/OPTICA.4.000412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vertical external cavity surface emitting lasers are ideal testbeds for studying nonlinear many-body systems driven far from equilibrium. The classical laser gain picture fails, however, when a high peak intensity optical pulse of duration shorter than the intrinsic carrier scattering time interacts with electrons in the conduction and holes in the valence band, and the non-equilibrium carrier distributions cannot recover during the presence of the exciting pulse. We present the optimization of ultrashort mode-locked pulses in a vertical external cavity surface emitting laser cavity with a saturable absorber mirror by modelling non-equilibrium quantum dynamics of the electron-hole excitations in the semiconductor quantum-well gain and absorber medium via the semiconductor Bloch equations and treating the field propagation at the level of Maxwell's wave equation. We introduce a systematic design that predicts the generation of stable mode-locked pulses of duration less than twenty femtoseconds. This factor of five improvement is of interest for mode-locking and ultrafast semiconductor dynamics applications. (C) 2017 Optical Society of America
引用
收藏
页码:412 / 417
页数:6
相关论文
共 24 条
[1]   High power ultrafast lasers [J].
Backus, S ;
Durfee, CG ;
Murnane, MM ;
Kapteyn, HC .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (03) :1207-1223
[2]   Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power [J].
Garnache, A ;
Hoogland, S ;
Tropper, AC ;
Sagnes, I ;
Saint-Girons, G ;
Roberts, JS .
APPLIED PHYSICS LETTERS, 2002, 80 (21) :3892-3894
[3]   Microscopic theory of gain and spontaneous emission in GaInNAs laser material [J].
Hader, J ;
Koch, SW ;
Moloney, JV .
SOLID-STATE ELECTRONICS, 2003, 47 (03) :513-521
[4]  
Haug H., 2001, QUANTUM THEORY OPTIC, Vthird
[5]   106 W continuous-wave output power from vertical-external-cavity surface-emitting laser [J].
Heinen, B. ;
Wang, T. -L. ;
Sparenberg, M. ;
Weber, A. ;
Kunert, B. ;
Hader, J. ;
Koch, S. W. ;
Moloney, J. V. ;
Koch, M. ;
Stolz, W. .
ELECTRONICS LETTERS, 2012, 48 (09) :516-U102
[6]   Femtosecond high-power quantum dot vertical external cavity surface emitting laser [J].
Hoffmann, Martin ;
Sieber, Oliver D. ;
Wittwer, Valentin J. ;
Krestnikov, Igor L. ;
Livshits, Daniil A. ;
Barbarin, Yohan ;
Suedmeyer, Thomas ;
Keller, Ursula .
OPTICS EXPRESS, 2011, 19 (09) :8108-8116
[7]  
Husaini S., 2013, COMMUNICATION
[8]   Passively modelocked surface-emitting semiconductor lasers [J].
Keller, Ursula ;
Tropper, Anne C. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 429 (02) :67-120
[9]   Fully microscopic modeling of mode locking in microcavity lasers [J].
Kilen, I. ;
Koch, S. W. ;
Hader, J. ;
Moloney, J. V. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (01) :75-80
[10]   Ultrafast nonequilibrium carrier dynamics in semiconductor laser mode locking [J].
Kilen, I. ;
Hader, J. ;
Moloney, J. V. ;
Koch, S. W. .
OPTICA, 2014, 1 (04) :192-197