Computational estimates of the gas-phase basicities, proton affinities and ionization potentials of the six isomers of dihydroxybenzoic acid

被引:20
|
作者
Yassin, FH [1 ]
Marynick, DS [1 ]
机构
[1] Univ Texas, Dept Chem & Biochem, Arlington, TX 76019 USA
关键词
D O I
10.1080/00268970512331316210
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The gas-phase basicities (GBs), gas-phase proton affinities (PAs) and ionization potentials (IPs) of all six isomers of dihydroxybenzoic acid have been calculated using density functional theory at the B3LYP/ 6-311++G(2df, p)// B3LYP/6-31+G** level. A detailed conformational analysis of each isomer was performed, and the calculated thermodynamic properties were Boltzmann averaged over all conformations. Respectively, the GBs and the gas-phase PAs vary from 803.8 and 832.5 kJ mol(-1) for the least basic species (3,5-DHB) to 830.1 and 861.4 kJ mol(-1) for the most basic isomer (2,4-DHB). The reported GBs and gas-phase PAs of 2,3-DHB and 2,4-DHB, are in excellent agreement with previous experimental measurements. Agreement for the 2,5-DHB and 3,4-DHB isomers are not as good, but still close to or within the experimental error estimates. The calculated values for the GB and gas-phase PA of 2,6-DHB and especially 3,5-DHB are significantly outside the experimental error brackets. Repeating these calculations on the lowest energy conformation of each isomer at the MP2/6-311++G(2df, p)// MP2/6- 31+G** level yielded significantly worse results. Our results indicate that protonation in all isomers takes place on the carboxylic sites. The vertical IPs vary from 8.14 eV for 2,5-DHB to 8.56 eV for 2,4-DHB.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 50 条