Intraoperative cone-beam CT spatial priors for diffuse optical fluorescence tomography

被引:2
|
作者
Daly, M. J. [1 ,2 ]
Chan, H. [2 ]
Muhanna, N. [2 ,3 ,4 ]
Akens, M. K. [2 ,5 ,6 ]
Wilson, B. C. [2 ,6 ,7 ]
Irish, J. C. [1 ,2 ,3 ,8 ]
Jaffray, D. A. [1 ,2 ,6 ,7 ,9 ]
机构
[1] Univ Toronto, Inst Med Sci, Toronto, ON, Canada
[2] Univ Hlth Network, TECHNA Inst, Toronto, ON, Canada
[3] Univ Toronto, Dept Otolaryngol Head & Neck Surg, Toronto, ON, Canada
[4] Tel Aviv Univ, Tel Aviv Sourasky Med Ctr, Dept Otolaryngol Head & Neck & Maxillofacial Surg, Tel Aviv, Israel
[5] Univ Toronto, Dept Surg, Toronto, ON, Canada
[6] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[7] Univ Hlth Network, Princess Margaret Canc Ctr, Toronto, ON, Canada
[8] Univ Hlth Network, Dept Surg Oncol, Toronto, ON, Canada
[9] Univ Hlth Network, Dept Med Phys, Toronto, ON, Canada
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2019年 / 64卷 / 21期
基金
加拿大健康研究院;
关键词
fluorescence-guided surgery; diffuse optical tomography; surgical navigation; cone-beam CT; spatial priors; IMAGE-GUIDED INTERVENTIONS; NEAR-INFRARED TOMOGRAPHY; COMPUTED-TOMOGRAPHY; IN-VIVO; MOLECULAR TOMOGRAPHY; BREAST-CANCER; NECK-SURGERY; GUIDANCE; REAL; ARM;
D O I
10.1088/1361-6560/ab4917
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A hybrid system for intraoperative cone-beam CT (CBCT) imaging and continuous-wave fluorescence tomography (FT) has been developed using an image-guidance framework. Intraoperative CBCT images with sub-millimeter spatial resolution are acquired with a flat-panel C-Arm. Tetrahedral meshes are generated from CBCT for finite element method implementation of diffuse optical tomography (NIRFAST). Structural data from CBCT is incorporated directly into the optical reconstruction process using Laplacian-type regularization ('soft spatial priors'). Experiments were performed using an in-house optical system designed for indocyanine green (ICG) fluorescence. A dynamic non-contact geometry was achieved using a stereoscopic optical tracker for real-time localization of a laser diode and CCD camera. Source and detector positions were projected onto the boundary elements of the tissue mesh using algorithms for ray-triangle intersection and camera lens calibration. Simulation studies showed the capabilities of a soft-prior approach, even in the presence of segmentation uncertainties. Experiments with ICG targets embedded in liquid phantoms determined the improvements in the quantification of the fluorophore yield, with errors of 85% and <20% for no priors and spatial priors, respectively. Similar results were observed with the ICG target embedded in ex vivo porcine loin, with errors of 52% and 12%, respectively. A proof-of-principal animal study was performed in a VX2-tumor in vivo rabbit model using liposomal nanoparticles co-encapsulating contrast for CT (iohexol) and fluorescence (ICG) imaging. Fusion of CBCT and FT reconstructions demonstrated concurrent anatomical and functional delineations of contrast enhancement around the periphery of the buccal tumor. These developments motivate future clinical translation of the FT system into an ongoing CBCT-guided head and neck surgery trial.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] An electromagnetic "Tracker-in-Table" configuration for X-ray fluoroscopy and cone-beam CT-guided surgery
    Yoo, J.
    Schafer, S.
    Uneri, A.
    Otake, Y.
    Khanna, A. J.
    Siewerdsen, J. H.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2013, 8 (01) : 1 - 13
  • [42] Incorporating Tissue Excision in Deformable Image Registration: A Modified Demons Algorithm for Cone-Beam CT-Guided Surgery
    Nithiananthan, S.
    Mirota, D.
    Uneri, A.
    Schafer, S.
    Otake, Y.
    Stayman, J. W.
    Siewerdsen, J. H.
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964
  • [43] Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?
    Cazzato, Roberto Luigi
    Battistuzzi, Jean-Benoit
    Catena, Vittorio
    Grasso, Rosario Francesco
    Zobel, Bruno Beomonte
    Schena, Emiliano
    Buy, Xavier
    Palussiere, Jean
    CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2015, 38 (05) : 1231 - 1236
  • [44] Flying focal spot (FFS) in cone-beam CT
    Kachelriess, Marc
    Knaup, Michael
    Penssel, Christian
    Kalender, Willi A.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (03) : 1238 - 1247
  • [45] Deformable motion compensation for interventional cone-beam CT
    Capostagno, S.
    Sisniega, A.
    Stayman, J. W.
    Ehtiati, T.
    Weiss, C. R.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (05):
  • [46] The contribution of Cone-Beam CT in the assessment of orofacial pain
    Langlais, R. -P.
    Mah, P.
    Goulet, J. -P.
    DOULEUR ET ANALGESIE, 2009, 22 (02): : 112 - 120
  • [47] Virtual bronchoscopic navigation with intraoperative cone-beam CT for the diagnosis of peripheral pulmonary nodules
    Zhang, Jisong
    Chen, Enguo
    Xu, Shan
    Xu, Li
    Hu, Huihui
    Dong, Liangliang
    Ying, Kejing
    BMC PULMONARY MEDICINE, 2024, 24 (01)
  • [48] Could Low-dose Cone-beam CT be Used for Endodontic Intraoperative Diagnosis?
    de Lima, Joao Pedro
    Mazzi-Chaves, Jardel Francisco
    de Sousa-Neto, Manoel Damiao
    Candemil, Amanda Pelegrin
    JOURNAL OF ENDODONTICS, 2023, 49 (09) : 1161 - 1168
  • [49] Geometry calibration method for a cone-beam CT system
    Yang, Hongkai
    Kang, Kejun
    Xing, Yuxiang
    MEDICAL PHYSICS, 2017, 44 (05) : 1692 - 1706
  • [50] Intraoperative cone-beam CT for image-guided tibial plateau fracture reduction
    Khoury, A.
    Siewerdsen, J. H.
    Whyne, C. M.
    Daly, M. J.
    Kreder, H. J.
    Moseley, D. J.
    Jaffray, D. A.
    COMPUTER AIDED SURGERY, 2007, 12 (04) : 195 - 207