SIMULATION STUDY ON THE TUBULAR MICROREACTOR FOR HYDROGEN PRODUCTION BY STEAM REFORMING OF METHANOL

被引:1
作者
Yuan, Zhanpeng [1 ]
Chen, Xueye [2 ]
机构
[1] Liaoning Univ Technol, Fac Mech Engn & Automat, Jinzhou 121001, Liaoning, Peoples R China
[2] Ludong Univ, Coll Transportat, Yantai 264025, Shandong, Peoples R China
关键词
Hydrogen production from methanol; microreactor; catalytic reaction; simulation analysis; WASTE-HEAT RECUPERATION; CATALYST SUPPORT; COPPER FOAM; SURFACE MICROCHANNELS; DESIGN; OPTIMIZATION; RECOVERY; SYSTEM;
D O I
10.1142/S0218625X22500676
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to reduce the carbon emissions of fuel vehicles, hydrogen has received extensive attention as a new clean energy. In this paper, a packed-bed microreactor for hydrogen production from methanol steam is designed for use in hydrogen fuel cells. By considering the heating gas velocity in the heating tubes, the inlet temperature of the microreactor, the size and number of heating tubes, inlet pressure, pellet porosity and thermal conductivity, parameters such as methanol conversion rates and hydrogen concentration were evaluated. First, the rate at which the gas is heated has a great influence on the reaction results. Choosing a larger heating gas velocity leads to an increase in the temperature inside the microreactor, thereby increasing the CH3OH conversion, resulting in a higher H-2 concentration at the outlet. Changing the inlet temperature of the microreactor affects the reaction speed, but has little effect on the H-2 concentration at the outlet. By studying the radius and number of heating tubes, we selected three different sets of data to compare the conversion rate of reactants and the concentration of products, and finally determined the optimal parameters as R = 4 mm and N = 8. Second, the inlet pressure has little effect on the H-2 concentration at the outlet, but has a significant effect on the reaction speed. Particle porosity has no effect on the reaction results. Finally, the larger the thermal conductivity, the higher the temperature in the microreactor, which is more conducive to the reaction.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] NUMERICAL SIMULATION STUDY ON THE REACTION PERFORMANCE OF A METHANOL STEAM REFORMING TO HYDROGEN MICROREACTOR
    Chen, Xueye
    Yuan, Zhanpeng
    SURFACE REVIEW AND LETTERS, 2023, 30 (05)
  • [2] Development of multilevel amplified methanol steam reforming microreactor with high hydrogen production rate
    Wu, Qiong
    Mei, Deqing
    Qiu, Xingye
    Wang, Yancheng
    FUEL, 2023, 350
  • [3] Hydrogen Production by Methanol Steam Reforming Using Microreactor
    Kawamura, Yoshihiro
    Ogura, Naotsugu
    Igarashi, Akira
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2013, 56 (05) : 288 - 297
  • [4] Development of methanol steam reforming microreactor based on stacked wave sheets and copper foam for hydrogen production
    Wu, Qiong
    Wang, Yancheng
    Mei, Deqing
    Si, Shangyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6282 - 6294
  • [5] Porous copper fiber sintered felts with surface microchannels for methanol steam reforming microreactor for hydrogen production
    Ke, Yuzhi
    Zhou, Wei
    Chu, Xuyang
    Yuan, Ding
    Wan, Shaolong
    Yu, Wei
    Liu, Yangxu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 5755 - 5765
  • [6] Hydrogen Production Performance of a Self-Heating Methanol Steam Reforming Microreactor
    Liu, Shuai
    Du, Pengzhu
    Jia, Hekun
    Hua, Lun
    Dong, Fei
    Hao, Liutao
    JOURNAL OF ENERGY ENGINEERING, 2025, 151 (02)
  • [7] Design and performance evaluation of flexible tubular microreactor for methanol steam reforming reaction
    Zhou, Shupan
    Zhong, Yuchen
    Lin, Weiming
    You, Huihui
    Li, Xinying
    Wu, Linjing
    Zhou, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (85) : 36022 - 36031
  • [8] Methanol steam reforming performance optimisation of cylindrical microreactor for hydrogen production utilising error backpropagation and genetic algorithm
    Zheng, Tianqing
    Zhou, Wei
    Yu, Wei
    Ke, Yuzhi
    Liu, Yangxu
    Liu, Ruiliang
    Hui, Kwan San
    CHEMICAL ENGINEERING JOURNAL, 2019, 357 : 641 - 654
  • [9] A thermally autonomous methanol steam reforming microreactor with porous copper foam as catalyst support for hydrogen production
    Wang, Yancheng
    Hong, Ziyue
    Mei, Deqing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (09) : 6734 - 6744
  • [10] Study on the impact of methanol steam reforming reactor channel structure on hydrogen production performance
    Liu, Shuai
    Du, Pengzhu
    Jia, Hekun
    Zhang, Qiushi
    Hao, Liutao
    RENEWABLE ENERGY, 2024, 228