A Deep Learning Model for Stroke Patients' Motor Function Prediction

被引:0
|
作者
AlArfaj, Abeer Abdulaziz [1 ]
Mahmoud, Hanan A. Hosni A. [1 ]
Hafez, Alaaeldin M. M. [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 11671, Saudi Arabia
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Informat Syst, Riyadh, Saudi Arabia
关键词
REHABILITATION; ADAPTATION; EXERCISE; IMPACT;
D O I
10.1155/2022/8645165
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep learning models are effectively employed to transfer learning to adopt learning from other areas. This research utilizes several neural structures to interpret the electroencephalogram images (EEG) of brain-injured cases to plan operative imagery-computerized interface models for controlling left and right hand movements. This research proposed a model parameter tuning with less training time using transfer learning techniques. The precision of the proposed model is assessed by the aptitudes of motor imagery detection. The experiments depict that the best performance is attained with the incorporation of the proposed EEG-DenseNet and the transfer model. The prediction accuracy of the model reached 96.5% with reduced time computational cost. These high performance proves that the EEG-DenseNet model has high prospective for motor imagery brain-injured therapy systems. It also productively exhibited the effectiveness of transfer learning techniques for enhancing the accuracy of electroencephalogram brain-injured therapy models.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Deep Learning-Based Extraction of Biomarkers for the Prediction of the Functional Outcome of Ischemic Stroke Patients
    Oliveira, Goncalo
    Fonseca, Ana Catarina
    Ferro, Jose
    Oliveira, Arlindo L.
    DIAGNOSTICS, 2023, 13 (24)
  • [32] Stroke Risk Prediction With Hybrid Deep Transfer Learning Framework
    Chen, Jie
    Chen, Yingru
    Li, Jianqiang
    Wang, Jia
    Lin, Zijie
    Nandi, Asoke K.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 411 - 422
  • [33] Reorganization of cortical motor function in patients after stroke
    Fernandez, L. G.
    Gonzalez, E. A.
    Betancourt, R. M.
    Sanchez, R. G.
    EUROPEAN JOURNAL OF NEUROLOGY, 2004, 11 : 148 - 148
  • [34] Effects of ULEM apparatus on motor function of patients with stroke
    Wang, Tong
    Wang, Xiang
    Wang, Hongxing
    He, Xiaoyuan
    Su, Jianxin
    Zhu, Yi
    Dong, Yan
    BRAIN INJURY, 2007, 21 (11) : 1203 - 1208
  • [35] Motor Function Assessment of Upper Limb in Stroke Patients
    Pan, Bingyu
    Huang, Zhen
    Jin, Tingting
    Wu, Jiankang
    Zhang, Zhiqiang
    Shen, Yanfei
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [36] Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis
    Yaxin Chen
    Tianyi Yang
    Xiaofeng Gao
    Ajing Xu
    Frontiers of Medicine, 2022, 16 (03) : 496 - 506
  • [37] Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis
    Yaxin Chen
    Tianyi Yang
    Xiaofeng Gao
    Ajing Xu
    Frontiers of Medicine, 2022, 16 : 496 - 506
  • [38] Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis
    Chen, Yaxin
    Yang, Tianyi
    Gao, Xiaofeng
    Xu, Ajing
    FRONTIERS OF MEDICINE, 2022, 16 (03) : 496 - 506
  • [39] Preserved motor skill learning in acute stroke patients
    Marius Baguma
    Maral Yeganeh Doost
    Audrey Riga
    Patrice Laloux
    Benoît Bihin
    Yves Vandermeeren
    Acta Neurologica Belgica, 2020, 120 : 365 - 374
  • [40] Preserved motor skill learning in acute stroke patients
    Baguma, Marius
    Doost, Maral Yeganeh
    Riga, Audrey
    Laloux, Patrice
    Bihin, Benoit
    Vandermeeren, Yves
    ACTA NEUROLOGICA BELGICA, 2020, 120 (02) : 365 - 374