New existence of periodic solutions for second order non-autonomous Hamiltonian systems

被引:22
作者
Zhang, Qiongfen [1 ]
Tang, X. H. [1 ]
机构
[1] Cent South Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
Periodic solutions; Mountain pass theorem; Local link theorem; Hamiltonian systems; Local superquadratic condition; HOMOCLINIC SOLUTIONS; MULTIPLICITY; INDEFINITE;
D O I
10.1016/j.jmaa.2010.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using mountain pass theorem and local link theorem, some existence theorems are obtained for periodic solutions of second order non-autonomous Hamiltonian systems under local superquadratic condition and other suitable conditions. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:357 / 367
页数:11
相关论文
共 24 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1986, CBMS REG C SER MATH
[3]  
BARTSCH T, 1994, J REINE ANGEW MATH, V451, P149
[4]   Critical point theory for indefinite functionals with symmetries [J].
Bartsch, T ;
Clapp, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 138 (01) :107-136
[6]   Multiple periodic solutions for second order systems with changing sign potential [J].
Faraci, Francesca .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) :567-578
[7]  
Fei GH, 2002, ELECTRON J DIFFER EQ
[8]   Periodic solutions for a class of nonautonomous second order Hamiltonian systems [J].
He, Xiumei ;
Wu, Xian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :1354-1364
[9]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[10]   APPLICATIONS OF LOCAL LINKING TO CRITICAL-POINT THEORY [J].
LI, SJ ;
WILLEM, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (01) :6-32