Atomistic to continuum limits for computational materials science

被引:50
作者
Blanc, Xavier
Le Bris, Claude
Lions, Pierre-Louis
机构
[1] Univ Paris 06, Lab JL Lions, F-75252 Paris, France
[2] Ecole Natl Ponts & Chaussees, CERAMICS, F-77455 Marne La Vallee, France
[3] MICMAC, F-78153 Le Chesnay, France
[4] Coll France, F-75231 Paris 05, France
[5] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2007年 / 41卷 / 02期
关键词
problems of mechanics; variational problems; discrete to continuum limit; multiscale models; homogenization; theory; Gamma-limit; quasiconvexity; gradient flows; quasicontinuum method; adaptivity;
D O I
10.1051/m2an:2007018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present article is an overview of some mathematical results, which provide elements of rigorous basis for some multiscale computations in materials science. The emphasis is laid upon atomistic to continuum limits for crystalline materials. Various mathematical approaches are addressed. The setting is stationary. The relation to existing techniques used in the engineering literature is investigated.
引用
收藏
页码:391 / 426
页数:36
相关论文
共 142 条
[1]   A general integral representation result for continuum limits of discrete energies with superlinear growth [J].
Alicandro, R ;
Cicalese, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :1-37
[2]  
ANITESCU M, 2005, ANLMCSP13031105 ARG
[3]  
[Anonymous], 1969, LECT CALCULUS VARIAT
[4]  
[Anonymous], MULTISCALE PROBLEMS
[5]  
[Anonymous], 1996, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
[6]  
[Anonymous], 2003, HDB NUMERICAL ANAL
[7]   Derivation of higher order gradient continuum models from atomistic models for crystalline solids [J].
Arndt, M ;
Griebel, M .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :531-562
[8]   A finite deformation membrane based on inter-atomic potentials for the transverse mechanics of nanotubes [J].
Arroyo, M ;
Belytschko, T .
MECHANICS OF MATERIALS, 2003, 35 (3-6) :193-215
[9]  
Ashcroft N W., 1976, Solid State Physics
[10]  
ASKAR A, 1985, LATTIC DYNAMICAL FDN