A finite strain non-parametric hyperelastic extension of the classical phenomenological theory for orthotropic compressible composites

被引:4
作者
Amores, Victor J. [1 ]
San Millan, Francisco J. [1 ,2 ]
Ben-Yelun, Ismael [1 ]
Montans, Francisco J. [1 ,3 ]
机构
[1] Univ Politecn Madrid, Escuela Tecn Super Ingn Aeronaut & Espacio, Pza Cardenal Cisneros, Madrid 28040, Spain
[2] Inst Nacl Tecn Aerosp Esteban Terradas, Carretera Aljavir Km 4, Torrejon De Ardoz 28850, Spain
[3] Univ Florida, Dept Mech & Aerosp Engn, Herbert Wertheim Coll Engn, Gainesville, FL 32611 USA
关键词
Orthotropy; Composites; Hyperelasticity; Auxetic foams; Bi-modulus materials;
D O I
10.1016/j.compositesb.2020.108591
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The phenomenological linear theory of orthotropic compressible materials is employed systematically in the engineering and scientific analysis of a large scope of bulk and composite materials. However, at finite elastic strains, multiscale and fiber-based parametric models are typically employed, which material parameters are fitted to macroscopic experimental data using optimization procedures. Phenomenological extensions of the linear theory capable of effectively modelling such a large scope of materials are not available. What we present in this work is a simple extension of the linear theory to finite strains such that at every deformation level, the infinitesimal theory is fully recovered. The model is based in non-parametric spline complementary energies employing an energy decomposition compatible with the classical infinitesimal expression at all strain levels. No material parameter is explicitly involved because the spline-based stress energies are numerically computed (not fitted) directly from experimental data. We show the applicability of the model to capture (1) the behavior of orthotropic bimodulus materials consistent with hyperelasticity (a novel formulation also presented herein), (2) orthotropic auxetic foams, and (3) composites at finite strains.
引用
收藏
页数:17
相关论文
共 102 条
[1]   Computational homogenization of the elastic and thermal properties of superconducting composite MgB2 wire [J].
Al Amin, Abdullah ;
Sabri, Laith ;
Poole, Charles ;
Baig, Tanvir ;
Deissler, Robert J. ;
Rindfleisch, Matthew ;
Doll, David ;
Tomsic, Michael ;
Akkus, Ozan ;
Martens, Michael .
COMPOSITE STRUCTURES, 2018, 188 :313-329
[2]   Proper generalized decomposition of time-multiscale models [J].
Ammar, Amine ;
Chinesta, Francisco ;
Cueto, Elias ;
Doblare, Manuel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 90 (05) :569-596
[3]  
Amores V, 2020, ARXIV200813523
[4]   HENCKY,H. APPROXIMATE STRAIN-ENERGY FUNCTION FOR MODERATE DEFORMATIONS [J].
ANAND, L .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1979, 46 (01) :78-82
[6]   Deficiencies in numerical models of anisotropic nonlinearly elastic materials [J].
Annaidh, A. Ni ;
Destrade, M. ;
Gilchrist, M. D. ;
Murphy, J. G. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2013, 12 (04) :781-791
[7]   Characterization of the anisotropic mechanical properties of excised human skin [J].
Annaidh, Aisling Ni ;
Bruyere, Karine ;
Destrade, Michel ;
Gilchrist, Michael D. ;
Ottenio, Melanie .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2012, 5 (01) :139-148
[8]  
[Anonymous], 1984, Continuum Theory of the Mechanics of Fibre-Reinforced Composites
[9]  
[Anonymous], 2012, MSC SOFTWARE MANUAL, VA
[10]  
[Anonymous], 2004, NONLINEAR FIELD THEO