Stabilization of the Furuta pendulum based on a Lyapunov function

被引:21
作者
Aguilar Ibanez, Carlos [1 ]
Sossa Azuela, Juan H. [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Computac, Mexico City, DF, Mexico
关键词
Lyapunov function; stabilization of the Furuta pendulum;
D O I
10.1007/s11071-006-9099-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We propose a Lyapunov-function-based control for the stabilization of the under-actuated Furuta pendulum. Firstly, by a suitable partial feedback linearization that allows to linearize only the actuated coordinate of the system, we proceed to find a candidate Lyapunov function. Based on this candidate function, we derive a stabilizing controller, in such away that the closed-loop system is locally and asymptotically stable around the unstable vertical equilibrium rest, with a computable domain of attraction.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 20 条
[1]  
Aguilar-Ibáñez C, 2002, P AMER CONTR CONF, V1-6, P1954, DOI 10.1109/ACC.2002.1023921
[2]  
[Anonymous], P 3 IEEE MED CONTR C
[3]  
[Anonymous], P 38 IEEE C DEC CONT
[4]   Swinging up a pendulum by energy control [J].
Åström, KJ ;
Furuta, K .
AUTOMATICA, 2000, 36 (02) :287-295
[5]   On the λ-equations for matching control laws [J].
Auckly, D ;
Kapitanski, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) :1372-1388
[6]   Detection of attraction domains of non-linear systems using bifurcation analysis and Lyapunov functions [J].
Barreiro, A ;
Aracil, J ;
Pagano, D .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (05) :314-327
[7]  
Bloch A. M., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P1652, DOI 10.1109/CDC.1999.830261
[8]   Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem [J].
Bloch, AM ;
Leonard, NE ;
Marsden, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) :2253-2270
[9]   Stabilization of the Furuta pendulum around its homoclinic orbit [J].
Fantoni, I ;
Lozano, R .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (06) :390-398
[10]  
Fantoni I., 2001, Nonlinear Control for Underactuated Mechanical Systems