A real-world dataset and data simulation algorithm for automated fish species identification

被引:9
作者
Allken, Vaneeda [1 ]
Rosen, Shale [1 ]
Handegard, Nils Olav [1 ]
Malde, Ketil [1 ,2 ]
机构
[1] Inst Marine Res, POB 1870, Bergen, Norway
[2] Univ Bergen, Dept Informat, Bergen, Norway
来源
GEOSCIENCE DATA JOURNAL | 2021年 / 8卷 / 02期
关键词
data augmentation; fish dataset; machine learning; synthetic data; MACKEREL SCOMBER-SCOMBRUS; NORDIC SEAS;
D O I
10.1002/gdj3.114
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Developing high-performing machine learning algorithms requires large amounts of annotated data. Manual annotation of data is labour-intensive, and the cost and effort needed are an important obstacle to the development and deployment of automated analysis. In a previous work, we have shown that deep learning classifiers can successfully be trained on synthetic images and annotations. Here, we provide a curated set of fish image data and backgrounds, the necessary software tools to generate synthetic images and annotations, and annotated real datasets to test classifier performance. The dataset is constructed from images collected using the Deep Vision system during two surveys from 2017 and 2018 that targeted economically important pelagic species in the Northeast Atlantic Ocean. We annotated a total of 1,879 images, randomly selected across trawl stations from both surveys, comprising 482 images of blue whiting, 456 images of Atlantic herring, 341 images of Atlantic mackerel, 335 images of mesopelagic fishes and 265 images containing a mixture of the four categories.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 21 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/2951913.2976746, 10.1145/3022670.2976746]
[2]   Fish species identification using a convolutional neural network trained on synthetic data [J].
Allken, Vaneeda ;
Handegard, Nils Olav ;
Rosen, Shale ;
Schreyeck, Tiffanie ;
Mahiout, Thomas ;
Malde, Ketil .
ICES JOURNAL OF MARINE SCIENCE, 2019, 76 (01) :342-349
[3]   Recent warming leads to a rapid borealization of fish communities in the Arctic [J].
Fossheim, Maria ;
Primicerio, Raul ;
Johannesen, Edda ;
Ingvaldsen, Randi B. ;
Aschan, Michaela M. ;
Dolgov, Andrey V. .
NATURE CLIMATE CHANGE, 2015, 5 (07) :673-+
[4]  
HILBORN R, 1992
[5]  
Hornberg A, 2017, HDB MACHINE COMPUTER, DOI [10.1002/9783527413409, DOI 10.1002/9783527413409]
[6]  
Howard A.G., 2017, 170404861 ARXIV, V1704, P4861
[7]   Hierarchical classification with reject option for live fish recognition [J].
Huang, Phoenix X. ;
Boom, Bastiaan J. ;
Fisher, Robert B. .
MACHINE VISION AND APPLICATIONS, 2015, 26 (01) :89-102
[8]  
ICES, 2013, TECH REP 18 ICES 900
[9]   Large mesopelagic fishes biomass and trophic efficiency in the open ocean [J].
Irigoien, Xabier ;
Klevjer, T. A. ;
Rostad, A. ;
Martinez, U. ;
Boyra, G. ;
Acuna, J. L. ;
Bode, A. ;
Echevarria, F. ;
Gonzalez-Gordillo, J. I. ;
Hernandez-Leon, S. ;
Agusti, S. ;
Aksnes, D. L. ;
Duarte, C. M. ;
Kaartvedt, S. .
NATURE COMMUNICATIONS, 2014, 5 :3271
[10]   Overlap in distribution and diets of Atlantic mackerel (Scomber scombrus), Norwegian spring-spawning herring (Clupea harengus) and blue whiting (Micromesistius poutassou) in the Norwegian Sea during late summer [J].
Langoy, Herdis ;
Nottestad, Leif ;
Skaret, Georg ;
Broms, Cecilie ;
Ferno, Anders .
MARINE BIOLOGY RESEARCH, 2012, 8 (5-6) :442-460