Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles

被引:82
作者
Zhang MeiYi [2 ]
Wang Yu [1 ]
Zhao DongYe [1 ]
Pan Gang [2 ]
机构
[1] Auburn Univ, Dept Civil Engn, Environm Engn Program, Harbert Engn Ctr 238, Auburn, AL 36849 USA
[2] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, Beijing 100085, Peoples R China
来源
CHINESE SCIENCE BULLETIN | 2010年 / 55卷 / 4-5期
关键词
arsenic; immobilization; iron; nanoparticle; soil pollution; soil remediation; CHROMATE RETENTION MECHANISMS; ZEROVALENT IRON; SURFACE-CHEMISTRY; CARBOXYMETHYL CELLULOSE; CONTAMINATED SOILS; OXIDE MINERALS; NANOPARTICLES; FERRIHYDRITE; ADSORPTION; REMOVAL;
D O I
10.1007/s11434-009-0703-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arsenic is a widespread contaminant in soils and groundwater. While various iron-based materials have been studied for immobilizing arsenic in contaminated soils, the feasibility of stabilized iron-based nanoparticles has not been reported. This study investigates the effectiveness of using three types of starch-stabilized iron-based nanoparticles, including zero-valent iron (ZVI), iron sulfide (FeS), and magnetite (Fe3O4), for immobilization of arsenic in two representative As-contaminated soils (an orchard soil and a fire range soil). To test the effect of the nanoparticles on the arsenic leachability, As-contaminated soils were amended with the nanoparticles at various Fe/As molar ratios (5:1-100:1) and contact time (3 and 7 d). After three days' treatments of a field-contaminated sandy soil, the PBET-based bioaccessibility of As decreased from an initial (71.3 +/- 3.1)% (mean +/- SD) to (30.9 +/- 3.2)% with ZVI, (37.6 +/- 1.2)% with FeS, and (29.8 +/- 3.1)% with Fe3O4 at an Fe/As molar ratio of 100:1. The TCLP-based leachability of arsenic in a spiked fire range soil decreased from an initial (0.51 +/- 0.11)% to (0.24 +/- 0.03)%, (0.27 +/- 0.04)% and (0.17 +/- 0.04)% by ZVI, FeS, and Fe3O4 nanoparticles, respectively. The Fe3O4 nanoparticles appeared to be more effective (5% or more) than other nanoparticles for immobilizing arsenic. When the two soils were compared, the treatment is more effective on the orchard soil that has a lower iron content and higher initial leachability than on the range soil that already has a high iron content. These results suggest that these innocuous iron-based nanoparticles may serve as effective media for immobilization of As in iron-deficient soils, sediments or solid wastes.
引用
收藏
页码:365 / 372
页数:8
相关论文
共 50 条
  • [31] Sulfidation of Nanoscale Zero-Valent Iron by Sulfide: The Dynamic Process, Mechanism, and Role of Ferrous Iron
    Xu, Wenqiang
    Xia, Chenyun
    He, Feng
    Wang, Zhenyu
    Liang, Liyuan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (38) : 17147 - 17156
  • [32] Synthesis of agar-stabilized nanoscale zero-valent iron particles and removal study of hexavalent chromium
    Jiao, C.
    Cheng, Y.
    Fan, W.
    Li, J.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2015, 12 (05) : 1603 - 1612
  • [33] Effect of Addition of Zero-Valent Iron (Fe) and Magnetite (Fe3O4) on Methane Yield and Microbial Consortium in Anaerobic Digestion of Food Wastewater
    Lee, Jun-Hyeong
    Lee, Jae-Hyuk
    Kim, Sang-Yoon
    Yoon, Young-Man
    PROCESSES, 2023, 11 (03)
  • [34] The removal of uranium onto carbon-supported nanoscale zero-valent iron particles
    Crane, Richard A.
    Scott, Thomas
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (12)
  • [35] Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron
    Xu, Jiang
    Hao, Zhiwei
    Xie, Chunsheng
    Lv, Xiaoshu
    Yang, Yueping
    Xu, Xinhua
    DESALINATION, 2012, 284 : 9 - 13
  • [36] The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs
    Peeters, Kelly
    Lespes, Gaetane
    Zuliani, Tea
    Scancar, Janez
    Milacic, Radmila
    WATER RESEARCH, 2016, 94 : 315 - 327
  • [37] Strong influence of degree of substitution on carboxymethyl cellulose stabilized sulfidated nanoscale zero-valent iron
    Li, Tielong
    Gao, Chaolin
    Wang, Wei
    Teng, Yaxin
    Li, Xiao
    Wang, Haitao
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 425
  • [38] Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses
    Li, Zhangtao
    Wang, Lu
    Wu, Jizi
    Xu, Yan
    Wang, Fan
    Tang, Xianjin
    Xu, Jianming
    Ok, Yong Sik
    Meng, Jun
    Liu, Xingmei
    ENVIRONMENTAL POLLUTION, 2020, 260
  • [39] Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism
    Bhowmick, Subhamoy
    Chakraborty, Sudipta
    Mondal, Priyanka
    Van Renterghem, Wouter
    Van den Berghe, Sven
    Roman-Ross, Gabriela
    Chatterjee, Debashis
    Iglesias, Monica
    CHEMICAL ENGINEERING JOURNAL, 2014, 243 : 14 - 23
  • [40] Synergistic effect and mechanism of Cd(II) and As(III) adsorption by biochar supported sulfide nanoscale zero-valent iron
    Zheng, Xiaoyu
    Wu, Qiuju
    Huang, Chao
    Wang, Ping
    Cheng, Hao
    Sun, Chengyou
    Zhu, Jian
    Xu, Haiyin
    Ouyang, Ke
    Guo, Jing
    Liu, Zhiming
    ENVIRONMENTAL RESEARCH, 2023, 231