"Why did my AI agent lose?": Visual Analytics for Scaling Up After-Action Review

被引:1
作者
Tabatabai, Delyar [1 ]
Ruangrotsakun, Anita [1 ]
Irvine, Jed [1 ]
Dodge, Jonathan [1 ]
Shureih, Zeyad [1 ]
Lam, Kin-Ho [1 ]
Burnett, Margaret [1 ]
Fern, Alan [1 ]
Kahng, Minsuk [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
来源
2021 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2021) | 2021年
关键词
GO;
D O I
10.1109/VIS49827.2021.9623268
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
How can we help domain-knowledgeable users who do not have expertise in AI analyze why an AI agent failed? Our research team previously developed a new structured process for such users to assess AI, called After-Action Review for Al (AAR/AI), consisting of a series of steps a human takes to assess an AI agent and formalize their understanding. In this paper, we investigate how the AAR/AI process can scale up to support reinforcement learning (RL) agents that operate in complex environments. We augment the AAR/AI process to be performed at three levels-episode-level, decision-level, and explanation-level-and integrate it into our redesigned visual analytics interface. We illustrate our approach through a usage scenario of analyzing why a RL agent lost in a complex real-time strategy game built with the StarCraft 2 engine. We believe integrating structured processes like AAR/AI into visualization tools can help visualization play a more critical role in AI interpretability.
引用
收藏
页码:16 / 20
页数:5
相关论文
共 31 条
[1]   Guidelines for Human-AI Interaction [J].
Amershi, Saleema ;
Weld, Dan ;
Vorvoreanu, Mihaela ;
Fourney, Adam ;
Nushi, Besmira ;
Collisson, Penny ;
Suh, Jina ;
Iqbal, Shamsi ;
Bennett, Paul N. ;
Inkpen, Kori ;
Teevan, Jaime ;
Kikin-Gil, Ruth ;
Horvitz, Eric .
CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2019,
[2]  
[Anonymous], 2017, DEATH INTERACTIVE IN
[3]  
Bloom BS., 1956, Taxonomy of educational objectives: the classification of educational goals: handbook I:cognitive domain, V1
[4]   A Review of Guidance Approaches in Visual Data Analysis: A Multifocal Perspective [J].
Ceneda, Davide ;
Gschwandtner, Theresia ;
Miksch, Silvia .
COMPUTER GRAPHICS FORUM, 2019, 38 (03) :861-879
[5]   Characterizing Guidance in Visual Analytics [J].
Ceneda, Davide ;
Gschwandtner, Theresia ;
May, Thorsten ;
Miksch, Silvia ;
Schulz, Hans-Jorg ;
Streit, Marc ;
Tominski, Christian .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) :111-120
[6]   A Review of Overview plus Detail, Zooming, and Focus plus Context Interfaces [J].
Cockburn, Andy ;
Karlson, Amy ;
Bederson, Benjamin B. .
ACM COMPUTING SURVEYS, 2008, 41 (01)
[7]   Guidance in the human-machine analytics process [J].
Collins, Christopher ;
Andrienko, Natalia ;
Schreck, Tobias ;
Yang, Jing ;
Choo, Jaegul ;
Engelke, Ulrich ;
Jena, Amit ;
Dwyer, Tim .
VISUAL INFORMATICS, 2018, 2 (03) :166-180
[8]  
Dodge J, 2021, APPL LETT, V2, DOI DOI 10.1002/AIL2.36
[9]  
Dodge Jonathan, 2021, ACM T INTERACT INTEL
[10]   DynamicsExplorer: Visual Analytics for Robot Control Tasks involving Dynamics and LSTM-based Control Policies [J].
He, Wenbin ;
Lee, Teng-Yok ;
van Baar, Jeroen ;
Wittenburg, Kent ;
Shen, Han-Wei .
2020 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2020, :36-45