NILPOTENT GROUPS OF CLASS THREE AND BRACES

被引:10
作者
Cedo, Ferran [1 ]
Jespers, Eric [2 ]
Okninski, Jan [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
[2] Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, Belgium
[3] Warsaw Univ, Inst Math, Banacha 2, PL-02097 Warsaw, Poland
关键词
Yang-Baxter equation; set-theoretic solution; brace; nilpotent group; metabelian group;
D O I
10.5565/PUBLMAT_60116_03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New constructions of braces on finite nilpotent groups are given and hence this leads to new solutions of the Yang-Baxter equation. In particular, it follows that if a group G of odd order is nilpotent of class three, then it is a homomorphic image of the multiplicative group of a finite left brace (i.e. an involutive Yang-Baxter group) which also is a nilpotent group of class three. We give necessary and sufficient conditions for an arbitrary group H to be the multiplicative group of a left brace such that [H, H] subset of Soc(H) and H/[H, H] is a standard abelian brace, where Soc(H) denotes the socle of the brace H.
引用
收藏
页码:55 / 79
页数:25
相关论文
共 15 条
[1]  
Arad Z., 1993, LONDON MATH SOC LECT, V1, P6, DOI [10.1017/CB09780511629280.004, DOI 10.1017/CB09780511629280.004]
[2]   CIRCLE GROUPS OF NILPOTENT RINGS [J].
AULT, JC ;
WATTERS, JF .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (01) :48-52
[3]   Braces and the Yang-Baxter Equation [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) :101-116
[4]  
Cedó F, 2010, T AM MATH SOC, V362, P2541
[5]  
DRINFELD VG, 1992, LECT NOTES MATH, V1510, P1
[6]   Set-theoretical solutions to the quantum Yang-Baxter equation [J].
Etingof, P ;
Schedler, T ;
Soloviev, A .
DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) :169-209
[7]   Semigroups of I-type [J].
Gateva-Ivanova, T ;
Van den Bergh, M .
JOURNAL OF ALGEBRA, 1998, 206 (01) :97-112
[8]   Multipermutation Solutions of the Yang-Baxter Equation [J].
Gateva-Ivanova, Tatiana ;
Cameron, Peter .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) :583-621
[9]  
Hall M., 2018, The Theory of Groups
[10]  
Jespers E, 2007, ALGEBRA APPL, V7, P7