Nodal solutions for a second-order m-point boundary value problem

被引:23
作者
Ma, Ruyun [1 ]
机构
[1] NW Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
multiplicity results; eigenvalues; bifurcation methods; nodal zeros; multi-point boundary value problems;
D O I
10.1007/s10587-006-0092-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of nodal solutions of the m-point boundary value problem u" + f(u) = 0, 0 < t < 1, u'(0) = 0, u(1) = Sigma(m-2)(i=1) alpha(i)u(eta(i)) where eta(i) is an element of Q (i = 1, 2,..., m - 2) with 0 < eta(1) < eta(2) <... < eta(m-2) < 1, and alpha(i) is an element of R (i = 1,2,...,m-2) with alpha(i) > 0 and 0 < Sigma(m-2)(i=1) alpha(i) < 1. We give conditions on the ratio f (s)/s at infinity and zero that guarantee the existence of nodal solutions. The proofs of the main results are based on bifurcation techniques.
引用
收藏
页码:1243 / 1263
页数:21
相关论文
共 11 条
[1]   POSITIVE SOLUTIONS OF ASYMPTOTICALLY LINEAR ELLIPTIC EIGENVALUE PROBLEMS [J].
AMBROSETTI, A ;
HESS, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (02) :411-422
[2]  
CASTRO A, 2001, ELECT J DIFFER EQU C, V10, P101
[3]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[4]   Existence of positive solutions for superlinear semipositone m-point boundary-value problems [J].
Ma, RY .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :279-292
[5]  
NAITO Y, 2004, NONLINEAR ANAL TMA, V59, P717
[6]  
Rabinowitz P.H., 1971, J. Funct. Anal, V7, P487, DOI [DOI 10.1016/0022-1236(71)90030-9, 10.1016/0022-1236(71)90030-9]
[7]   On four-point boundary value problem without growth conditions [J].
Rachunková, I .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1999, 49 (02) :241-248
[8]   MULTIPLICITY RESULTS FOR ODES WITH NONLINEARITIES CROSSING ALL BUT A FINITE NUMBER OF EIGENVALUES [J].
RUF, B ;
SRIKANTH, PN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (02) :157-163
[9]   Global bifurcation for 2mth-order boundary value problems and infinitely many solutions of superlinear problems [J].
Rynne, BP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 188 (02) :461-472
[10]   Positive solutions of some three point boundary value problems via fixed point index theory [J].
Webb, JRL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) :4319-4332