Characterization of stochastic processes which stabilize linear companion form systems

被引:6
作者
Kao, J [1 ]
Wihstutz, V
机构
[1] Univ San Francisco, San Francisco, CA 94117 USA
[2] Univ N Carolina, Charlotte, NC 28223 USA
关键词
Lyapunov exponents; stability; stabilization by noise; stochastic linear systems; integrals of stationary processes;
D O I
10.1016/S0304-4149(00)00012-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The class of stochastic processes is characterized which, as multiplicative noise with large intensity, stabilizes a linear system with companion form d x d-matrix. This includes the characterization of parametric noise which stabilizes the damped inverse pendulum. The proof yields also an expansion of the top Lyapunov exponent in terms of the noise intensity as well as a criterion for a stationary diffusion process permitting a stationary integral and it shows that stabilizing noise averages the Lyapunov spectrum. (C) 2000 Elsevier Science B.V. All rights reserved. MSC. 60H10; 93E15.
引用
收藏
页码:49 / 68
页数:20
相关论文
共 22 条
[1]  
[Anonymous], MATH STUDIES
[2]   WIDE SENSE STATIONARY SOLUTIONS OF LINEAR-SYSTEMS WITH ADDITIVE NOISE [J].
ARNOLD, L ;
WIHSTUTZ, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (03) :413-426
[3]   LYAPUNOV EXPONENTS - A SURVEY [J].
ARNOLD, L ;
WIHSTUTZ, V .
LECTURE NOTES IN MATHEMATICS, 1986, 1186 :1-26
[4]   ALMOST SURE AND MOMENT STABILITY FOR LINEAR ITO EQUATIONS [J].
ARNOLD, L ;
OELJEKLAUS, E ;
PARDOUX, E .
LECTURE NOTES IN MATHEMATICS, 1986, 1186 :129-159
[5]  
Arnold L., 1998, Springer Monographs in Mathematics
[6]   VIBRATIONAL CONTROL OF NONLINEAR-SYSTEMS - VIBRATIONAL STABILIZABILITY [J].
BELLMAN, RE ;
BENTSMAN, J ;
MEERKOV, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (08) :710-716
[7]  
ETHIER S., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658
[8]   CLASSIFICATION OF SECOND ORDER DEGENERATE ELLIPTIC OPERATORS AND ITS PROBABILISTIC CHARACTERIZATION [J].
ICHIHARA, K ;
KUNITA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (03) :235-254
[9]   CLASSIFICATION OF 2ND ORDER DEGENERATE ELLIPTIC OPERATORS AND ITS PROBABILISTIC CHARACTERIZATION [J].
ICHIHARA, K ;
KUNITA, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (01) :81-84
[10]  
Ikeda N., 1981, STOCHASTIC DIFFERENT