Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations

被引:7
|
作者
Liu, Youqiong [1 ,2 ]
Cai, Li [1 ,3 ,4 ]
Chen, Yaping [1 ,3 ,4 ]
Wang, Bin [1 ,3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[2] Xinyang Nomal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
[3] NPU UoG Int Cooperat Lab Computat & Applicat Card, Xian 710129, Peoples R China
[4] Xian Key Lab Sci Computat & Appl Stat, Xian 710129, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Hamilton-Jacobi equations; physics-informed neural networks; adaptive weighted optimizer; the logarithmic mean; the periodicity requirements; SEMIDISCRETE CENTRAL SCHEMES; VISCOSITY SOLUTIONS; WENO;
D O I
10.3934/mbe.2022601
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Physics-informed neural networks (PINN) have lately become a research hotspot in the interdisciplinary field of machine learning and computational mathematics thanks to the flexibility in tackling forward and inverse problems. In this work, we explore the generality of the PINN training algorithm for solving Hamilton-Jacobi equations, and propose physics-informed neural networks based on adaptive weighted loss functions (AW-PINN) that is trained to solve unsupervised learning tasks with fewer training data while physical information constraints are imposed during the training process. To balance the contributions from different constrains automatically, the AW-PINN training algorithm adaptively update the weight coefficients of different loss terms by using the logarithmic mean to avoid additional hyperparameter. Moreover, the proposed AW-PINN algorithm imposes the periodicity requirement on the boundary condition and its gradient. The fully connected feedforward neural networks are considered and the optimizing procedure is taken as the Adam optimizer for some steps followed by the L-BFGS-B optimizer. The series of numerical experiments illustrate that the proposed algorithm effectively achieves noticeable improvements in predictive accuracy and the convergence rate of the total training error, and can approximate the solution even when the Hamiltonian is nonconvex. A comparison between the proposed algorithm and the original PINN algorithm for Hamilton-Jacobi equations indicates that the proposed AW-PINN algorithm can train the solutions more accurately with fewer iterations.
引用
收藏
页码:12866 / 12896
页数:31
相关论文
共 50 条
  • [31] Control of Partial Differential Equations via Physics-Informed Neural Networks
    Carlos J. García-Cervera
    Mathieu Kessler
    Francisco Periago
    Journal of Optimization Theory and Applications, 2023, 196 : 391 - 414
  • [32] Surrogate-Based Physics-Informed Neural Networks for Elliptic Partial Differential Equations
    Zhi, Peng
    Wu, Yuching
    Qi, Cheng
    Zhu, Tao
    Wu, Xiao
    Wu, Hongyu
    MATHEMATICS, 2023, 11 (12)
  • [33] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    APPLICATIONS OF MATHEMATICS, 2023, 68 (05) : 661 - 684
  • [34] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Wonho Han
    Kwangil Kim
    Unhyok Hong
    Applications of Mathematics, 2023, 68 : 661 - 684
  • [35] Mapped WENO schemes based on a new smoothness indicator for Hamilton-Jacobi equations
    Ha, Youngsoo
    Kim, Chang Ho
    Lee, Yeon Ju
    Yoon, Jungho
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 670 - 682
  • [36] Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics
    Barles, Guy
    Perthame, Benoit
    RECENT DEVELOPMENTS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 439 : 57 - +
  • [37] Finite-difference least square methods for solving Hamilton-Jacobi equations using neural networks
    Esteve-Yague, Carlos
    Tsai, Richard
    Massucco, Alex
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [38] Hamilton-Jacobi equations for optimal control on junctions with unbounded running cost functions
    Phan Trong Tien
    Tran Van Bang
    APPLICABLE ANALYSIS, 2021, 100 (07) : 1397 - 1413
  • [39] Weak KAM solutions of Hamilton-Jacobi equations with decreasing dependence on unknown functions
    Wang, Kaizhi
    Wang, Lin
    Yan, Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 411 - 432
  • [40] Sparse wavefield reconstruction based on Physics-Informed neural networks
    Xu, Bin
    Zou, Yun
    Sha, Gaofeng
    Yang, Liang
    Cai, Guixi
    Li, Yang
    ULTRASONICS, 2025, 149