Dust density waves in a dc flowing complex plasma with discharge polarity reversal

被引:33
作者
Jaiswal, S. [1 ,5 ]
Pustylnik, M. Y. [1 ]
Zhdanov, S. [1 ]
Thomas, H. M. [1 ]
Lipaev, A. M. [2 ]
Usachev, A. D. [2 ]
Molotkov, V. I. [2 ]
Fortov, V. E. [2 ]
Thoma, M. H. [3 ]
Novitskii, O. V. [4 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, D-82234 Wessling, Germany
[2] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
[3] Justus Liebig Univ Giessen, Phys Inst 1, D-35392 Giessen, Germany
[4] Gagarin Res & Test Cosmonaut Training Ctr, Star City 141160, Moscow Region, Russia
[5] Auburn Univ, Phys Dept, Auburn, AL 36849 USA
关键词
ACOUSTIC-WAVES;
D O I
10.1063/1.5040417
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on the observation of the self-excited dust density waves in the dc discharge complex plasma. The experiments were performed under microgravity conditions in the Plasmakristall-4 facility on board the International Space Station. In the experiment, the microparticle cloud was first trapped in an inductively coupled plasma and then released to drift for some seconds in a dc discharge with constant current. After that, the discharge polarity was reversed. DC plasma containing a drifting microparticle cloud was found to be strongly non-uniform in terms of microparticle drift velocity and plasma emission in accordance with [Zobnin et al., Phys. Plasmas 25, 033702 (2018)]. In addition to that, non-uniformity in the self-excited wave pattern was observed: In the front edge of the microparticle cloud (defined as head), the waves had larger phase velocity than in the rear edge (defined as tail). Also, after the polarity reversal, the wave pattern exhibited several bifurcations: Between each of the two old wave crests, a new wave crest has formed. These bifurcations, however, occurred only in the head of the microparticle cloud. We show that spatial variations of electric field inside the drifting cloud play an important role in the formation of the wave pattern. Comparison of the theoretical estimations and measurements demonstrate the significant impact of the electric field on the phase velocity of the wave. The same theoretical approach applied to the instability growth rate showed agreement between estimated and measured values. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 24 条
[1]   LABORATORY OBSERVATION OF THE DUST-ACOUSTIC WAVE MODE [J].
BARKAN, A ;
MERLINO, RL ;
DANGELO, N .
PHYSICS OF PLASMAS, 1995, 2 (10) :3563-3565
[2]   Agglomeration of microparticles in complex plasmas [J].
Du, Cheng-Ran ;
Thomas, Hubertus M. ;
Ivlev, Alexei V. ;
Konopka, Uwe ;
Morfill, Gregor E. .
PHYSICS OF PLASMAS, 2010, 17 (11)
[3]   Autowaves in a dc complex plasma confined behind a de Laval nozzle [J].
Fink, M. A. ;
Zhdanov, S. K. ;
Schwabe, M. ;
Thoma, M. H. ;
Hoefner, H. ;
Thomas, H. M. ;
Morfill, G. E. .
EPL, 2013, 102 (04)
[4]   Dust-acoustic wave instability at the diffuse edge of radio frequency inductive low-pressure gas discharge plasma [J].
Fortov, VE ;
Usachev, AD ;
Zobnin, AV ;
Molotkov, VI ;
Petrov, OF .
PHYSICS OF PLASMAS, 2003, 10 (05) :1199-1208
[5]   Large-amplitude dust waves excited by the gas-dynamic impact in a dc glow discharge plasma [J].
Fortov, VE ;
Petrov, OF ;
Molotkov, VI ;
Poustylnik, MY ;
Torchinsky, VM ;
Khrapak, AG ;
Chernyshev, AV .
PHYSICAL REVIEW E, 2004, 69 (01) :5
[6]   Compressional waves in complex (dusty) plasmas under microgravity conditions [J].
Khrapak, S ;
Samsonov, D ;
Morfill, G ;
Thomas, H ;
Yaroshenko, V ;
Rothermel, H ;
Hagl, T ;
Fortov, V ;
Nefedov, A ;
Molotkov, V ;
Petrov, O ;
Lipaev, A ;
Ivanov, A ;
Baturin, Y .
PHYSICS OF PLASMAS, 2003, 10 (01) :1-4
[8]   Frequency clusters and defect structures in nonlinear dust-density waves under microgravity conditions [J].
Menzel, K. O. ;
Arp, O. ;
Piel, A. .
PHYSICAL REVIEW E, 2011, 83 (01)
[9]   Spatial Frequency Clustering in Nonlinear Dust-Density Waves [J].
Menzel, K. O. ;
Arp, O. ;
Piel, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (23)
[10]   25 years of dust acoustic waves [J].
Merlino, Robert L. .
JOURNAL OF PLASMA PHYSICS, 2014, 80 :773-786