Reinforcement learning with augmented states in partially expectation and action observable environment

被引:0
|
作者
Guirnaldo, SA [1 ]
Watanabe, K [1 ]
Izumi, K [1 ]
Kiguchi, K [1 ]
机构
[1] Saga Univ, Fac Engn Syst & Technol, Grad Sch Sci & Engn, Saga 8408502, Japan
来源
SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5 | 2002年
关键词
partially observable Markov decision processes; expectation; reinforcement learning; perception; perceptual aliasing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of developing good or optimal policies for partially observable Markov decision processes (POMDP) remains one of the most alluring areas of research in artificial intelligence. Encourage by the way how we (humans) form expectations from past experiences and how our decisions and behaviour are affected with our expectations, this paper proposes a method called expectation and action augmented states (EAAS) in reinforcement learning aimed to discover good or near optimal policies in partially observable environment. The method uses the concept of expectation to give distinction between aliased states. It works by augmenting the agent's observation with its expectation of that observation. Two problems from the literature were used to test the proposed method. The results show promising characteristics of the method as compared to some methods currently being used in this domain.
引用
收藏
页码:823 / 828
页数:6
相关论文
共 50 条
  • [1] Partially observable environment estimation with uplift inference for reinforcement learning based recommendation
    Shang, Wenjie
    Li, Qingyang
    Qin, Zhiwei
    Yu, Yang
    Meng, Yiping
    Ye, Jieping
    MACHINE LEARNING, 2021, 110 (09) : 2603 - 2640
  • [2] Partially observable environment estimation with uplift inference for reinforcement learning based recommendation
    Wenjie Shang
    Qingyang Li
    Zhiwei Qin
    Yang Yu
    Yiping Meng
    Jieping Ye
    Machine Learning, 2021, 110 : 2603 - 2640
  • [3] Hierarchical Deep Reinforcement Learning for Multi-robot Cooperation in Partially Observable Environment
    Liang, Zhixuan
    Cao, Jiannong
    Lin, Wanyu
    Chen, Jinlin
    Xu, Huafeng
    2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021), 2021, : 272 - 281
  • [4] Learning reward machines: A study in partially observable reinforcement learning 
    Icarte, Rodrigo Toro
    Klassen, Toryn Q.
    Valenzano, Richard
    Castro, Margarita P.
    Waldie, Ethan
    Mcilraith, Sheila A.
    ARTIFICIAL INTELLIGENCE, 2023, 323
  • [5] Learning partially observable deterministic action models
    Amir, Eyal
    Chang, Allen
    Journal of Artificial Intelligence Research, 2008, 33 : 349 - 402
  • [6] Multi-task Reinforcement Learning in Partially Observable Stochastic Environments
    Li, Hui
    Liao, Xuejun
    Carin, Lawrence
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 1131 - 1186
  • [7] Partially Observable Reinforcement Learning for Sustainable Active Surveillance
    Chen, Hechang
    Yang, Bo
    Liu, Jiming
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2018, PT II, 2018, 11062 : 425 - 437
  • [8] Bayesian Nonparametric Methods for Partially-Observable Reinforcement Learning
    Doshi-Velez, Finale
    Pfau, David
    Wood, Frank
    Roy, Nicholas
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 394 - 407
  • [9] PALO bounds for reinforcement learning in partially observable stochastic games
    Ceren, Roi
    He, Keyang
    Doshi, Prashant
    Banerjee, Bikramjit
    NEUROCOMPUTING, 2021, 420 : 36 - 56
  • [10] Reinforcement Learning of Chaotic Systems Control in Partially Observable Environments
    Weissenbacher, Max
    Borovykh, Anastasia
    Rigas, Georgios
    FLOW TURBULENCE AND COMBUSTION, 2025,