Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead

被引:95
作者
Fendorf, S [1 ]
La Force, MJ
Li, GC
机构
[1] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA
[2] San Francisco State Univ, Dept Geosci, San Francisco, CA 94132 USA
关键词
D O I
10.2134/jeq2004.2049
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The hazard imposed by trace element contaminants within soils is dependent on their ability to migrate into water systems and their availability for biological uptake. The degree to which a contaminant may dissociate from soil solids and become available to a target organism (i.e., bioaccessibility) is therefore a determining risk factor. We used a physiologically based extraction test (PBET) to estimate the bioaccessible fraction of arsenic-, chromium-, and lead-amended soil. We investigated soils from the A and B horizons of the Melton Valley series, obtained from Oak Ridge National Laboratory site, to address temporal changes in bioaccessibility. Additionally, common extractions that seek to define reactive pools of metals were employed and their correlation to PBET levels evaluated. With the exception of Ph amended to the A horizon, all other treatments exhibited an exponential decrease in bioaccessibility with incubation time. The bioaccessible fraction was less than 0.2 mg kg(-1) within 30 d of incubation for As and Cr in the A horizon and for As and Ph within the B horizon; Cr in the B horizon declined to nearly 0.3 mg kg(-1) within 100 d of aging. The exchangeable fraction declined with incubation period and, with the exception of Ph, was highly correlated with the decline in bioaccessibilitv. Our results demonstrate limited bioaccessibility in all but one case and the need to address both short-term temporal changes and, most importantly, the soil physiochemical properties. They further reveal the importance of incubation time on the reactivity of such trace elements.
引用
收藏
页码:2049 / 2055
页数:7
相关论文
共 46 条
[1]  
AHARONI C, 1991, SSSA SPEC PUBL, V27, P1
[2]   COBALT, CADMIUM, AND LEAD SORPTION TO HYDROUS IRON-OXIDE - RESIDENCE TIME EFFECT [J].
AINSWORTH, CC ;
PILON, JL ;
GASSMAN, PL ;
VANDERSLUYS, WG .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1994, 58 (06) :1615-1623
[3]   Intraparticle surface diffusion of metal contaminants and their attenuation in microporous amorphous Al, Fe, and Mn oxides [J].
Axe, L ;
Trivedi, P .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2002, 247 (02) :259-265
[4]   Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides [J].
Ball, JW ;
Nordstrom, DK .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1998, 43 (06) :895-918
[5]   Surface complexation of Pb(II) at oxide-water interfaces .1. XAFS and bond-valence determination of mononuclear and polynuclear Pb(II) sorption products on aluminum oxides [J].
Bargar, JR ;
Brown, GE ;
Parks, GA .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1997, 61 (13) :2617-2637
[6]  
Basta N, 2000, J SOIL CONTAM, V9, P149, DOI 10.1080/10588330008984181
[8]   ARSENIC SPECIATION IN THE ENVIRONMENT [J].
CULLEN, WR ;
REIMER, KJ .
CHEMICAL REVIEWS, 1989, 89 (04) :713-764
[9]   MICROMINERALOGY OF MINE WASTES IN RELATION TO LEAD BIOAVAILABILITY, BUTTE, MONTANA [J].
DAVIS, A ;
DREXLER, JW ;
RUBY, MV ;
NICHOLSON, A .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (07) :1415-1425
[10]   Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility [J].
Dixit, S ;
Hering, JG .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (18) :4182-4189