Magnetic fingerprints of sub-100 nm Fe dots

被引:133
|
作者
Dumas, Randy K.
Li, Chang-Peng
Roshchin, Igor V.
Schuller, Ivan K.
Liu, Kai [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1103/PhysRevB.75.134405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sub-100 nm nanomagnets not only are technologically important, but also exhibit complex magnetization reversal behaviors as their dimensions are comparable to typical magnetic domain wall widths. Here we capture magnetic "fingerprints" of 10(9) Fe nanodots as they undergo a single domain to vortex state transition, using a first-order reversal curve (FORC) method. As the nanodot size increases from 52 nm to 67 nm, the FORC diagrams reveal striking differences, despite only subtle changes in their major hysteresis loops. The 52 nm nanodots exhibit single domain behavior and the coercivity distribution extracted from the FORC distribution agrees well with a calculation based on the measured nanodot size distribution. The 58 and 67 nm nanodots exhibit vortex states, where the nucleation and annihilation of the vortices are manifested as butterflylike features in the FORC distribution and confirmed by micromagnetic simulations. Furthermore, the FORC method gives quantitative measures of the magnetic phase fractions, and vortex nucleation and annihilation fields.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation
    Nania, Manuela
    Foglia, Fabrizia
    Matar, Omar K.
    Cabral, Joao T.
    NANOSCALE, 2017, 9 (05) : 2030 - 2037
  • [42] Advanced gate dielectric materials for sub-100 nm CMOS
    Iwai, H
    Ohmi, S
    Akama, S
    Ohshima, C
    Kikuchi, A
    Kashiwagi, I
    Taguchi, J
    Yamamoto, H
    Tonotani, J
    Kim, Y
    Ueda, I
    Kuriyama, A
    Yoshihara, Y
    INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, 2002, : 625 - 628
  • [43] Modelling challenges in sub-100 nm gate stack MOSFETs
    Mangla, Tina
    Sehgal, Amit
    Gupta, Mridula
    Gupta, R. S.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2006, 21 (12) : 1609 - 1619
  • [44] Scaling laws for the resistivity increase of sub-100 nm interconnects
    Steinhoegl, W
    Schindler, G
    Steinlesberger, G
    Traving, M
    Engelhardt, M
    2003 IEEE INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2003, : 27 - 30
  • [45] Sub-100 nm metrology using interferometrically produced fiducials
    J Vac Sci Technol B Microelectron Nanometer Struct, (2692-2697):
  • [46] Force measurements between sub-100 nm colloidal particles
    Velegol, Darrell
    Holtzer, Gretchen L.
    Radovic-Moreno, Aleksandar F.
    Cuppett, Joshua D.
    LANGMUIR, 2007, 23 (03) : 1275 - 1280
  • [47] A nanofountain probe with sub-100 nm molecular writing resolution
    Kim, KH
    Moldovan, N
    Espinosa, HD
    SMALL, 2005, 1 (06) : 632 - 635
  • [48] Ultraprecision CD metrology for sub-100 nm patterns by AFM
    Gonda, S
    Kinoshita, K
    Noguchi, H
    Kurosawa, T
    Koyanagi, H
    Murayama, K
    Terasawa, T
    Characterization and Metrology for ULSI Technology 2005, 2005, 788 : 369 - 378
  • [49] Anisotropic etching of inverted pyramids in the sub-100 nm region
    Hantschel, T
    Vandervorst, W
    MICROELECTRONIC ENGINEERING, 1997, 35 (1-4) : 405 - 407
  • [50] Precisely Determined Water Permeabilities of Sub-100 nm Nanochannels
    Xu, Fang-Fang
    Liu, Zhi-Wei
    Huang, Ran
    Zhang, Jia-Ming
    Liu, Jie
    Hu, Zheng-Guo
    Ma, Jie
    Yao, Hui-Jun
    Sun, You-Mei
    Chen, Yong-Hui
    Zhang, Sheng-Xia
    Mo, Dan
    Duan, Jing-Lai
    ADVANCED MATERIALS INTERFACES, 2020, 7 (15)