Magnetic fingerprints of sub-100 nm Fe dots

被引:133
|
作者
Dumas, Randy K.
Li, Chang-Peng
Roshchin, Igor V.
Schuller, Ivan K.
Liu, Kai [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
D O I
10.1103/PhysRevB.75.134405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sub-100 nm nanomagnets not only are technologically important, but also exhibit complex magnetization reversal behaviors as their dimensions are comparable to typical magnetic domain wall widths. Here we capture magnetic "fingerprints" of 10(9) Fe nanodots as they undergo a single domain to vortex state transition, using a first-order reversal curve (FORC) method. As the nanodot size increases from 52 nm to 67 nm, the FORC diagrams reveal striking differences, despite only subtle changes in their major hysteresis loops. The 52 nm nanodots exhibit single domain behavior and the coercivity distribution extracted from the FORC distribution agrees well with a calculation based on the measured nanodot size distribution. The 58 and 67 nm nanodots exhibit vortex states, where the nucleation and annihilation of the vortices are manifested as butterflylike features in the FORC distribution and confirmed by micromagnetic simulations. Furthermore, the FORC method gives quantitative measures of the magnetic phase fractions, and vortex nucleation and annihilation fields.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Optimal sampling strategies for sub-100 nm overlay
    Rangarajan, B
    Templeton, M
    Capodieci, L
    Subramanian, R
    Scranton, A
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XII, 1998, 3332 : 348 - 359
  • [22] Low frequency noise in sub-100 nm MOSFETs
    Kramer, TA
    Pease, RFW
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 19 (1-2): : 13 - 17
  • [23] Sub-100 nm IR spectromicroscopy of living cells
    Mayet, C.
    Dazzi, A.
    Prazeres, R.
    Allot, E.
    Glotin, E.
    Ortega, J. M.
    OPTICS LETTERS, 2008, 33 (14) : 1611 - 1613
  • [24] Resist requirements for sub-100 nm microlithography.
    Hinsberg, WD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U191 - U191
  • [25] Half-hedgehog spin textures in sub-100 nm soft magnetic nanodots
    Berganza, Eider
    Jaafar, Miriam
    Fernandez-Roldan, Jose A.
    Goiriena-Goikoetxea, Maite
    Pablo-Navarro, Javier
    Garcia-Arribas, Alfredo
    Guslienko, Konstantin
    Magen, Cesar
    De Teresa, Jose M.
    Chubykalo-Fesenko, Oksana
    Asenjo, Agustina
    NANOSCALE, 2020, 12 (36) : 18646 - 18653
  • [26] Sub-100 nm2 Cobalt Interconnects
    Dutta, Shibesh
    Beyne, Sofie
    Gupta, Anshul
    Kundu, Shreya
    Bender, Hugo
    Van Elshocht, Sven
    Jamieson, Geraldine
    Vandervorst, Wilfried
    Bommels, Jurgen
    Wilson, Christopher J.
    Tokei, Zsolt
    Adelmann, Christoph
    IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) : 731 - 734
  • [27] Sub-100 nm Channel Length Graphene Transistors
    Liao, Lei
    Bai, Jingwei
    Cheng, Rui
    Lin, Yung-Chen
    Jiang, Shan
    Qu, Yongquan
    Huang, Yu
    Duan, Xiangfeng
    NANO LETTERS, 2010, 10 (10) : 3952 - 3956
  • [28] Sub-100 nm structures by neutral atom lithography
    Schulze, Th.
    Brezger, B.
    Schmidt, P.O.
    Mertens, R.
    Bell, A.S.
    Pfau, T.
    Mlynek, J.
    Microelectronic Engineering, 1999, 46 (01): : 105 - 108
  • [29] Hardmask technology for sub-100 nm lithographic imaging
    Babich, K
    Mahorowala, AP
    Medeiros, DR
    Pfeiffer, D
    Petrillo, K
    Angelopoulos, M
    Grill, A
    Patel, VV
    ADVANCES IN RESIST TECHNOLOGY AND PROCESSING XX, PTS 1 AND 2, 2003, 5039 : 152 - 165
  • [30] Exchange-dominated eigenmodes in sub-100 nm permalloy dots: A micromagnetic study at finite temperature
    Carlotti, G.
    Gubbiotti, G.
    Madami, M.
    Tacchi, S.
    Stamps, R. L.
    JOURNAL OF APPLIED PHYSICS, 2014, 115 (17)