Baer and Mittag-Leffler modules over tame hereditary algebras

被引:4
作者
Angeleri Hugel, Lidia [1 ]
Herbera, Dolors [2 ]
Trlifaj, Jan [3 ]
机构
[1] Univ Insubria, Dipartimento Informat & Comunicaz, I-21100 Varese, Italy
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[3] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
关键词
REPRESENTATIONS; RINGS; COVERS;
D O I
10.1007/s00209-009-0499-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a structure theory for two classes of infinite dimensional modules over tame hereditary algebras: the Baer modules, and the Mittag-Leffler ones. Aright R-module M is called Baer if Ext(R)(1) (M, T) = 0 for all torsion modules T, and M is Mittag-Leffler in case the canonical map M circle times(R) Pi(i is an element of I) Q(i) -> Pi(i is an element of I) (M circle times(R) Q(i)) is injective where {Q(i)}(i is an element of I) are arbitrary left R-modules. We show that a module M is Baer iff M is p-filtered where p is the preprojective component of the tame hereditary algebra R. We apply this to prove that the universal localization of a Baer module is projective in case we localize with respect to a complete tube. Using infinite dimensional tilting theory we then obtain a structure result showing that Baer modules are more complex then the (infinite dimensional) preprojective modules. In the final section, we give a complete classification of the Mittag-Leffler modules.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 33 条
  • [1] Angeleri Hugel L, 2006, FORUM MATH, V18, P211
  • [2] Covers and envelopes via endoproperties of modules
    Angeleri-Hügel, L
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 86 : 649 - 665
  • [3] [Anonymous], 2006, APPROXIMATIONS ENDOM
  • [4] [Anonymous], THESIS KIEL
  • [5] AZUMAYA G, 1992, CONT MATH, V124, P17
  • [6] The subgroup of the elements of finite order of an Abelian group
    Baer, R
    [J]. ANNALS OF MATHEMATICS, 1936, 37 : 766 - 781
  • [7] Strongly flat covers
    Bazzoni, S
    Salce, L
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 276 - 294
  • [8] Crawley-Boevey W, 1998, CMS C P, V23, P29
  • [9] CRAWLEYBOEVEY WW, 1991, P LOND MATH SOC, V62, P490
  • [10] BAER MODULES OVER DOMAINS
    EKLOF, PC
    FUCHS, L
    SHELAH, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 322 (02) : 547 - 560